
Even More Number
Theory

CSE 311 Spring 2022

Lecture 17

Announcements

If you turn in HW5 part 2 today, we’re hoping to get you feedback on
HW5 part 2 by Sunday morning.

If you turn in HW5 part 2 using late days, we’re hoping to get you
feedback by sometime Sunday afternoon.

HW5 part 2 solutions will be posted on Ed Saturday morning.

There’s an assignment “NOT the real midterm” on gradescope so you
can see what the midterm will look like logistically.

Announcements

We designed the midterm to take 30 minutes.

But you have 2 hours (of your choice) from when you open it.
Open notes, open internet; but no discussion with other students.

We’ll release it at 6:30 PM on Friday, due at 11:59 PM on Sunday.

Starting 6:30 PM Friday, we’ll only answer private questions on Ed. And
only “clarification” questions.

HW6 will come out on Monday, due on the 18th.

Announcements

What’s up with this “it’s supposed to be 30 minutes, but you have 2
hours thing?”

You’ve never done time-constrained proof writing before. Use this as a
practice run (could you have gotten close to 30 minutes? If not, do you
have to change something for the final, if it’s in-person?)

When we gave take-home exams in prior quarters, they often dragged
out for days for students, with the last hours being (not particularly
useful/educational) polishing of solutions.
We know you’re time-constrained, you should still polish your answers, but we
understand you’re more limited than on homework.

Announcements

HW4 was harder than the last few. That’s normal.

It’s easy to get frustrated at this point of the class, you just got back a
hard homework, you’ve started on one of our toughest concepts
(induction), and we’re about to have a midterm.

Don’t check-out! Looking at grades/feedback is never fun, but it’s a
really key way to learn.

There’s a post on Ed with common misconceptions, please read it! Even
if you got full-credit

RSA Encryption

Framing Device

We’re going to give you enough background to (mostly) understand the
RSA encryption system.

Framing Device

We’re going to give you enough background to (mostly) understand the
RSA encryption system.

Prime Numbers

Modular Arithmetic

Modular Multiplicative Inverse

Bezout’s Theorem

Extended Euclidian Algorithm

Framing Device

We’re going to give you enough background to (mostly) understand the
RSA encryption system.

Framing Device

We’re going to give you enough background to (mostly) understand the
RSA encryption system.

Modular Exponentiation

An application of all of this modular arithmetic

Amazon chooses random 512-bit (or 1024-bit) prime numbers 𝑝, 𝑞 and
an exponent 𝑒 (often about 60,000).

Amazon calculates n = 𝑝𝑞. They tell your computer (𝑛, 𝑒) (not 𝑝, 𝑞)

You want to send Amazon your credit card number 𝑎.

You compute 𝐶 = 𝑎𝑒%𝑛 and send Amazon 𝐶.

Amazon computes 𝑑, the multiplicative inverse of 𝑒 (𝑚𝑜𝑑 [𝑝 − 1][𝑞 − 1])

Amazon finds 𝐶𝑑%𝑛

Fact: 𝑎 = 𝐶𝑑%𝑛 as long as 0 < 𝑎 < 𝑛 and 𝑝 ∤ 𝑎 and 𝑞 ∤ 𝑎

How big are those numbers?

1230186684530117755130494958384962720772853569595334792197322

4521517264005072636575187452021997864693899564749427740638459

2519255732630345373154826850791702612214291346167042921431160

2221240479274737794080665351419597459856902143413

3347807169895689878604416984821269081770479498371376856891243

1388982883793878002287614711652531743087737814467999489

3674604366679959042824463379962795263227915816434308764267603

2283815739666511279233373417143396810270092798736308917

How do we accomplish those steps?

That fact? You can prove it in the extra credit problem on HW5. It’s a
nice combination of lots of things we’ve done with modular arithmetic.

Let’s talk about finding 𝐶 = 𝑎𝑒%𝑛.

𝑒 is a BIG number (about 216 is a common choice)

int total = 1;

for(int i = 0; i < e; i++){

total = (a * total) % n;

}

Fast Exponentiation Algorithm

Let’s build a faster algorithm.

Fast exponentiation – simple case. What if 𝑒 is exactly 216?

int total = 1;

for(int i = 0; i < e; i++){

total = a * total % n;

}

Instead:

int total = a;

for(int i = 0; i < log(e); i++){

total = total^2 % n;

}

Fast Exponentiation Algorithm

What if 𝑒 isn’t exactly a power of 2?

Step 1: Write 𝑒 in binary.

Step 2: Find 𝑎𝑐%𝑛 for 𝑐 every power of 2 up to 𝑒.

Step 3: calculate 𝑎𝑒 by multiplying 𝑎𝑐 for all 𝑐 where binary expansion of
𝑒 had a 1.

Fast Exponentiation Algorithm

Find 411%10

Step 1: Write 𝒆 in binary.

Step 2: Find 𝑎𝑐%𝑛 for 𝑐 every power of 2 up to 𝑒.

Step 3: calculate 𝑎𝑒 by multiplying 𝑎𝑐 for all 𝑐 where binary expansion of
𝑒 had a 1.

Start with largest power of 2 less than 𝑒 (8). 8’s place gets a 1. Subtract power

Go to next lower power of 2, if remainder of 𝑒 is larger, place gets a 1, subtract
power; else place gets a 0 (leave remainder alone).

11 = 10112

Fast Exponentiation Algorithm

Find 411%10

Step 1: Write 𝑒 in binary.

Step 2: Find 𝒂𝒄%𝒏 for 𝒄 every power of 𝟐 up to 𝒆.

Step 3: calculate 𝑎𝑒 by multiplying 𝑎𝑐 for all 𝑐 where binary expansion of 𝑒
had a 1.

41%10 = 4

42%10 = 6

44%10 = 62%10 = 6

48%10 = 62%10 = 6

Fast Exponentiation Algorithm

Find 411%10

Step 1: Write 𝑒 in binary.

Step 2: Find 𝑎𝑐%𝑛 for 𝑐 every power of 2 up to 𝑒.

Step 3: calculate 𝒂𝒆 by multiplying 𝒂𝒄 for all 𝒄 where binary expansion of 𝒆
had a 𝟏.

41%10 = 4

42%10 = 6

44%10 = 62%10 = 6

48%10 = 62%10 = 6

411%10 = 48+2+1%10 =

[(48%10) ⋅ 42%10 ⋅ 4%10]%10 = (6 ⋅ 6 ⋅ 4)%10

= 36%10 ⋅ 4 %10 = 6 ⋅ 4 %10 = 24%10 = 4.

Fast Exponentiation Algorithm

Is it…actually fast?

The number of multiplications is between log2 𝑒 and 2 log2 𝑒.

That’s A LOT smaller than 𝑒

One More Example for Reference

Find 325%7 using the fast exponentiation algorithm.

Find 25 in binary:

16 is the largest power of 2 smaller than 25. 25 − 16 = 9 remaining

8 is smaller than 9. 9 − 8 = 1 remaining.

4s place gets a 0.

2s place gets a 0

1𝑠 place gets a 1

110012

One More Example for Reference

Find 325%7 using the fast exponentiation algorithm.

Find 32
𝑖
%7:

31%7 = 3

32%7 = 9%7 = 2

34%7 = (32 ⋅ 32)%7 = (2 ⋅ 2)%7 = 4

38%7 = 34 ⋅ 34 %7 = 4 ⋅ 4 %7 = 2

316%7 = 38 ⋅ 38 %7 = 2 ⋅ 2 %7 = 4

One More Example for Reference

Find 325%7 using the fast exponentiation algorithm.

31%7 = 3

32%7 = 2

34%7 = 4

38%7 = 2

316%7 = 4

325%7 = 316+8+1%7

= [(316%7) ⋅ 38%7 ⋅ (31%7)]%7

= 4 ⋅ 2 ⋅ 3 %7
= 1 ⋅ 3 %7 = 3

A Brief Concluding Remark

Why does RSA work? i.e. why is my credit card number “secret”?

Raising numbers to large exponents (in mod arithmetic) and finding
multiplicative inverses in modular arithmetic are things computers can
do quickly.

But factoring numbers (to find 𝑝, 𝑞 to get 𝑑) or finding an “exponential
inverse” (not the real term) directly are not things computers can do
quickly. At least as far as we know.

An application of all of this modular arithmetic

Amazon chooses random 512-bit (or 1024-bit) prime numbers 𝑝, 𝑞 and
an exponent 𝑒 (often about 60,000).

Amazon calculates n = 𝑝𝑞. They tell your computer (𝑛, 𝑒) (not 𝑝, 𝑞)

You want to send Amazon your credit card number 𝑎.

You compute 𝐶 = 𝑎𝑒%𝑛 and send Amazon 𝐶.

Amazon computes 𝑑, the multiplicative inverse of 𝑒 (𝑚𝑜𝑑 [𝑝 − 1][𝑞 − 1])

Amazon finds 𝐶𝑑%𝑛

Fact: 𝑎 = 𝐶𝑑%𝑛 as long as 0 < 𝑎 < 𝑛 and 𝑝 ∤ 𝑎 and 𝑞 ∤ 𝑎

More Number Theory Proofs

Caution

To fit proofs on these slides, I skipped some of the boilerplate steps (e.g.
introducing variables as arbitrary, including a conclusion)

Don’t skip those on your homework/midterm, please ☺

Warm up

Show that 𝑎 ≡ 𝑏 𝑚𝑜𝑑 𝑛 if and only if 𝑏 ≡ 𝑎(𝑚𝑜𝑑 𝑛)

Show that 𝑎%𝑛=(𝑎 − 𝑛)%𝑛 Where 𝑏%𝑐 is the unique 𝑟 such that 𝑏 =
𝑘𝑐 + 𝑟 for some integer 𝑘.

For every 𝑎 ∈ ℤ, 𝒅 ∈ ℤ with 𝒅 > 𝟎
There exist unique integers 𝑞, 𝑟 with 0 ≤ 𝑟 < 𝑑 Such that 𝑎 = 𝑑𝑞 + 𝑟

The Division Theorem

Let 𝑎 ∈ ℤ, 𝑏 ∈ ℤ, 𝑛 ∈ ℤ and 𝑛 > 0.

We say 𝑎 ≡ 𝑏 (𝑚𝑜𝑑 𝑛) if and only if 𝑛|(𝑏 − 𝑎)

Equivalence in modular arithmetic

Warm up

Show that 𝑎 ≡ 𝑏 𝑚𝑜𝑑 𝑛 if and only if 𝑏 ≡ 𝑎(𝑚𝑜𝑑 𝑛)

𝑎 ≡ 𝑏 𝑚𝑜𝑑 𝑛 ↔ 𝑛|(𝑏 − 𝑎) ↔ 𝑛𝑘 = 𝑏 − 𝑎 for 𝑘 ∈ ℤ ↔

𝑛(−𝑘) = 𝑎 − 𝑏(for − k ∈ ℤ) ↔ 𝑛| 𝑎 − 𝑏 ↔ 𝑏 ≡ 𝑎(𝑚𝑜𝑑 𝑛)

Show that 𝑎%𝑛=(𝑎 − 𝑛)%𝑛 Where 𝑏%𝑐 is the unique 𝑟 such that 𝑏 =
𝑘𝑐 + 𝑟 for some integer 𝑘.

By definition of %, 𝑎 = 𝑞𝑛 + (𝑎%𝑛) for some integer 𝑞. Subtracting 𝑛,

𝑎 − 𝑛 = 𝑞 − 1 𝑛 + (𝑎%𝑛). Observe that 𝑞 − 1 is an integer, and that
this is the form of the division theorem for 𝑎 − 𝑛 %𝑛. Since the division
theorem guarantees a unique integer, 𝑎 − 𝑛 %𝑛 = (𝑎%𝑛)

Modular arithmetic so far

For all integers 𝑎, 𝑏, 𝑐, 𝑑, 𝑛 where 𝑛 > 0:

If 𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑛) then 𝑎 + 𝑐 ≡ 𝑎 + 𝑐(𝑚𝑜𝑑 𝑛).

If 𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑛) then 𝑎𝑐 ≡ 𝑏𝑐 (𝑚𝑜𝑑 𝑛).

𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑛) if and only if 𝑏 ≡ 𝑎 (𝑚𝑜𝑑 𝑛).

𝑎%𝑛 = 𝑎 − 𝑛 %𝑛.

% and Mod

Other resources use 𝑚𝑜𝑑 to mean an operation (takes in an integer,
outputs an integer). We will not in this course. 𝑚𝑜𝑑 only describes ≡. It’s
not “just on the right hand side”

Define 𝑎%𝑏 to be “the 𝑟 you get from the division theorem”
i.e. the integer 𝑟 such that 0 ≤ 𝑟 < 𝑑 and 𝑎 = 𝑏𝑞 + 𝑟 for some integer 𝑞.

This is the “mod function”

I claim 𝑎%𝑛 = 𝑏%𝑛 if and only if 𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑛).

How do we show and if-and-only-if?

𝑎%𝑛 = 𝑏%𝑛 if and only if 𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑛)

Backward direction:

Suppose 𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑛)

𝑎%𝑛 = 𝑏 − 𝑛𝑘 %𝑛 = 𝑏%𝑛

𝑎%𝑛 = 𝑏%𝑛 if and only if 𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑛)

Backward direction:

Suppose 𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑛)

𝑛|𝑏 − 𝑎 so 𝑛𝑘 = 𝑏 − 𝑎 for some integer 𝑘. (by definitions of mod and
divides).

So 𝑎 = 𝑏 − 𝑛𝑘

Taking each side %𝑛 we get:

𝑎%𝑛 = 𝑏 − 𝑛𝑘 %𝑛 = 𝑏%𝑛

Where the last equality follows from 𝑘 being an integer and doing 𝑘
applications of the identity we proved in the warm-up.

𝑎%𝑛 = 𝑏%𝑛 if and only if 𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑛)

Show the forward direction:

If 𝑎%𝑛 = 𝑏%𝑛 then 𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑛).

This proof is a bit different than the other direction.

Remember to work from top and bottom!!

For every 𝑎 ∈ ℤ, 𝒅 ∈ ℤ with 𝒅 > 𝟎
There exist unique integers 𝑞, 𝑟 with 0 ≤ 𝑟 < 𝑑 Such that 𝑎 = 𝑑𝑞 + 𝑟

The Division Theorem

Let 𝑎 ∈ ℤ, 𝑏 ∈ ℤ, 𝑛 ∈ ℤ and 𝑛 > 0.

We say 𝑎 ≡ 𝑏 (𝑚𝑜𝑑 𝑛) if and only if 𝑛|(𝑏 − 𝑎)

Equivalence in modular arithmetic

Pollev.com/uwcse311

𝑎%𝑛 = 𝑏%𝑛 if and only if 𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑛)

Forward direction:

Suppose 𝑎%𝑛 = 𝑏%𝑛.

By definition of %,𝑎 = 𝑘𝑛 + (𝑎%𝑛) and 𝑏 = 𝑗𝑛 + 𝑏%𝑛 for integers 𝑘, 𝑗

Isolating 𝑎%𝑛 we have 𝑎%𝑛 = 𝑎 − 𝑘𝑛. Since 𝑎%𝑛 = 𝑏%𝑛, we can plug
into the second equation to get: 𝑏 = 𝑗𝑛 + (𝑎 − 𝑘𝑛)

Rearranging, we have 𝑏 − 𝑎 = 𝑗 − 𝑘 𝑛. Since 𝑘, 𝑗 are integers we have
𝑛|(𝑏 − 𝑎).

By definition of mod we have 𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑛).

Why does the Euclidian
Algorithm Work?

Correctness of an algorithm

The key to the Euclidian Algorithm being correct is that each time
through the loop, you don’t change the gcd of the variables m,n.

To prove the code correct, you really want an induction proof (it’s good
practice to think about it!). The inductive step relies on the fact we
stated but didn’t prove:

gcd(a,b) = gcd(b, a%b).

Let’s prove it!

GCD fact

If 𝑎 and 𝑏 are positive integers, then gcd(a,b) = gcd(b, a % b)

How do you show two gcds are equal?

Call 𝑎 = gcd 𝑤, 𝑥 , 𝑏 = gcd(𝑦, 𝑧)

If 𝑏|𝑤 and 𝑏|𝑥 then 𝑏 is a common divisor of 𝑤, 𝑥 so 𝑏 ≤ 𝑎

If 𝑎|𝑦 and 𝑎|𝑧 then 𝑎 is a common divisor of 𝑦, 𝑧, so 𝑎 ≤ 𝑏

If 𝑎 ≤ 𝑏 and 𝑏 ≤ 𝑎 then 𝑎 = 𝑏

gcd(a,b) = gcd(b, a % b)

Let x = gcd(𝑎, 𝑏) and 𝑦 = gcd(𝑏, 𝑎%𝑏).

We show that 𝑦 is a common divisor of 𝑎 and 𝑏.

By definition of gcd, 𝑦|𝑏 and 𝑦|(𝑎%𝑏). So it is enough to show that 𝑦|𝑎.

Applying the definition of divides we get 𝑏 = 𝑦𝑘 for an integer 𝑘, and
𝑎%𝑏 = 𝑦𝑗 for an integer 𝑗.

By definition of mod, 𝑎%𝑏 is 𝑎 = 𝑞𝑏 + 𝑎%𝑏 for an integer 𝑞.

Plugging in both of our other equations:

𝑎 = 𝑞𝑦𝑘 + 𝑦𝑗 = 𝑦 𝑞𝑘 + 𝑗 . Since 𝑞, 𝑘, and 𝑗 are integers, 𝑦|𝑎. Thus 𝑦 is a
common divisor of 𝑎, 𝑏 and thus 𝑦 ≤ 𝑥.

gcd(a,b) = gcd(b, a % b)

Let x = gcd(𝑎, 𝑏) and 𝑦 = gcd(𝑏, 𝑎%𝑏).

We show that 𝑥 is a common divisor of 𝑏 and a%𝑏.

By definition of gcd, x|𝑏 and 𝑥|𝑎. So it is enough to show that x|(𝑎%𝑏).

Applying the definition of divides we get 𝑏 = 𝑥𝑘′ for an integer 𝑘′, and
a = 𝑥𝑗′ for an integer 𝑗′.

By definition of mod, 𝑎%𝑏 is 𝑎 = 𝑞𝑏 + 𝑎%𝑏 for an integer 𝑞

Plugging in both of our other equations:

𝑥𝑗′ = 𝑞𝑥𝑘′ + 𝑎%𝑏. Solving for 𝑎%𝑏, we have 𝑎%𝑏 = 𝑥𝑗′ − 𝑞𝑥𝑘′ =
𝑥 𝑗′ − 𝑞𝑘′ . So 𝑥|(𝑎%𝑏). Thus 𝑥 is a common divisor of 𝑏, 𝑎%𝑏 and thus
𝑥 ≤ 𝑦.

gcd(a,b) = gcd(b, a % b)

Let x = gcd(𝑎, 𝑏) and 𝑦 = gcd(𝑏, 𝑎%𝑏).

We show that 𝑥 is a common divisor of 𝑏 and a%𝑏.

We have shown 𝑥 ≤ 𝑦 and 𝑦 ≤ 𝑥.

Thus 𝑥 = 𝑦, and gcd 𝑎, 𝑏 = gcd 𝑏, 𝑎%𝑏 .

