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Lecture 18



Let’s Try Another! Stamp Collecting

I have 4 cent stamps and 5 cent stamps (as many as I want of each). 
Prove that I can make exactly 𝑛 cents worth of stamps for all 𝑛 ≥ 12.

Try for a few values.

Then think…how would the inductive step go?



Stamp Collection, Done Wrong

Define 𝑃(𝑛) I can make 𝑛 cents of stamps with just 4 and 5 cent stamps.

We prove 𝑃(𝑛) is true for all 𝑛 ≥ 12 by induction on 𝑛.

Base Case:

12 cents can be made with three 4 cent stamps.
Inductive Hypothesis Suppose 𝑃(𝑘), 𝑘 ≥ 12.

Inductive Step:

We want to make 𝑘 + 1 cents of stamps. By IH we can make 𝑘 cents 
exactly with stamps. Replace one of the 4 cent stamps with a 5 cent 
stamp.

𝑃(𝑛) holds for all 𝑛 by the principle of induction.



Stamp Collection, Done Wrong

What if the starting point doesn’t have any 4 cent stamps?

Like, say, 15 cents = 5+5+5.



Gridding

I’ve got a bunch of these 3 piece tiles.

I want to fill a 2𝑛x2𝑛 grid (𝑛 ≥ 1) with the pieces, except for a 1x1 spot 
in a corner.  



Gridding: Not a formal proof, just a sketch

Base Case: 𝑛 = 1

Inductive hypothesis: Suppose you can tile a 2𝑘x2𝑘 grid, except for a 
corner. 

Inductive step: 2𝑘+1x2𝑘+1, divide into quarters. By IH can tile…



Recursively Defined Functions

Just like induction works will with recursive code, it also works well for 
recursively-defined functions.

Define the Fibonacci numbers as follows:

𝑓 0 = 1

𝑓 1 = 1

𝑓 𝑛 = 𝑓 𝑛 − 1 + 𝑓(𝑛 − 2) for all 𝑛 ∈ ℕ, 𝑛 ≥ 2.

*This is a somewhat unusual definition, 𝑓 0 = 0, 𝑓 1 = 1 is more 
common.



Fibonacci Inequality

Show that 𝑓 𝑛 ≤ 2𝑛 for all 𝑛 ≥ 0 by induction.

𝑓 0 = 1; 𝑓 1 = 1
𝑓 𝑛 = 𝑓 𝑛 − 1 + 𝑓(𝑛 − 2) for all 𝑛 ∈ ℕ, 𝑛 ≥ 2.



Fibonacci Inequality

Show that 𝑓 𝑛 ≤ 2𝑛 for all 𝑛 ≥ 0 by induction.

Define 𝑃(𝑛) to be “𝑓 𝑛 ≤ 2𝑛” We show 𝑃(𝑛) is true for all 𝑛 ≥ 0 by 
induction on 𝑛.

Base Cases: 𝑛 = 0 : 𝑓 0 = 1 ≤ 1 = 20.

𝑛 = 1 : 𝑓 1 = 1 ≤ 2 = 21.

Inductive Hypothesis: Suppose 𝑃 0 ∧ 𝑃 1 ∧ ⋯∧ 𝑃(𝑘) for an arbitrary 
𝑘 ≥ 1.

Inductive step:

Target: 𝑃 𝑘 + 1 . i.e. 𝑓 𝑘 + 1 ≤ 2𝑘+1

𝑓 0 = 1; 𝑓 1 = 1
𝑓 𝑛 = 𝑓 𝑛 − 1 + 𝑓(𝑛 − 2) for all 𝑛 ∈ ℕ, 𝑛 ≥ 2.



Fibonacci Inequality

Show that 𝑓 𝑛 ≤ 2𝑛 for all 𝑛 ≥ 0 by induction.

Define 𝑃(𝑛) to be “𝑓 𝑛 ≤ 2𝑛” We show 𝑃(𝑛) is true for all 𝑛 ≥ 0 by 
induction on 𝑛.

Base Cases: 𝑛 = 0 : 𝑓 0 = 1 ≤ 1 = 20.

𝑛 = 1 : 𝑓 1 = 1 ≤ 2 = 21.

Inductive Hypothesis: Suppose 𝑃 0 ∧ 𝑃 1 ∧ ⋯∧ 𝑃(𝑘) for an arbitrary 𝑘 ≥ 1.

Inductive step: 𝑓 𝑘 + 1 = 𝑓 𝑘 + 𝑓(𝑘 − 1) by the definition of the Fibonacci 
numbers. Applying IH twice, we have 𝑓 𝑘 + 1 ≤ 2𝑘 + 2𝑘−1 < 2𝑘 + 2𝑘 =
2𝑘+1.

Therefore, we have 𝑃(𝑛) for all 𝑛 ≥ 0 by the principle of induction.

𝑓 0 = 1; 𝑓 1 = 1
𝑓 𝑛 = 𝑓 𝑛 − 1 + 𝑓(𝑛 − 2) for all 𝑛 ∈ ℕ, 𝑛 ≥ 2.



Claim: 3|(22𝑛−1) for all 𝑛 ∈ ℕ.

[Define 𝑃(𝑛)]

Base Case

Inductive Hypothesis

Inductive Step

[conclusion]



Claim: 3|(22𝑛−1) for all 𝑛 ∈ ℕ.

Let 𝑃 𝑛 be “3|(22𝑛−1).” We show 𝑃(𝑛) holds for all 𝑛 ∈ ℕ.

Base Case (𝑛 = 0) note that 22𝑛 − 1 = 20 − 1 = 0. Since 3 ⋅ 0 = 0, and 
0 is an integer, 3|(22⋅0−1).

Inductive Hypothesis: Suppose 𝑃(𝑘) holds for an arbitrary 𝑘 ≥ 0

Inductive Step: 

Target: 𝑃(𝑘 + 1), i.e. 3|(22(𝑘+1)−1)

Therefore, we have 𝑃(𝑛) for all 𝑛 ∈ ℕ by the principle of induction.



Claim: 3|(22𝑛−1) for all 𝑛 ∈ ℕ.

Let 𝑃 𝑛 be “3|(22𝑛−1).” We show 𝑃(𝑛) holds for all 𝑛 ∈ ℕ.

Base Case (𝑛 = 0) note that 22𝑛 − 1 = 20 − 1 = 0. Since 3 ⋅ 0 = 0, and 0 is an 
integer, 3|(22⋅0−1).

Inductive Hypothesis: Suppose 𝑃(𝑘) holds for an arbitrary 𝑘 ≥ 0

Inductive Step: By inductive hypothesis, 3|(22𝑘−1). i.e. there is an integer 𝑗
such that 3𝑗 = 22𝑘 − 1. 

22(𝑘+1) − 1 = 4 ⋅ 22𝑘 − 1

Target: 𝑃(𝑘 + 1), i.e. 3|(22(𝑘+1)−1)

Therefore, we have 𝑃(𝑛) for all 𝑛 ∈ ℕ by the principle of induction.

FORCE the expression in your IH to appear



Claim: 3|(22𝑛−1) for all 𝑛 ∈ ℕ.

Let 𝑃 𝑛 be “3|(22𝑛−1).” We show 𝑃(𝑛) holds for all 𝑛 ∈ ℕ.

Base Case (𝑛 = 0) note that 22𝑛 − 1 = 20 − 1 = 0. Since 3 ⋅ 0 = 0, and 0 is an integer, 
3|(22⋅0−1).

Inductive Hypothesis: Suppose 𝑃(𝑘) holds for an arbitrary 𝑘 ≥ 0

Inductive Step: By inductive hypothesis, 3|(22𝑘−1). i.e. there is an integer 𝑗 such that 3𝑗 =
22𝑘 − 1. 

22(𝑘+1) − 1 = 4 ⋅ 22𝑘 − 1 = 4 22𝑘 − 1 + 4 − 1

By IH, we can replace 22𝑘 − 1 with 3𝑗 for an integer 𝑗

22(𝑘+1) − 1 = 4 3𝑗 + 4 − 1 = 3 4𝑗 + 3 = 3 4𝑗 + 1

Since 4𝑗 + 1 is an integer, we meet the definition of divides and we have:

Target: 𝑃(𝑘 + 1), i.e. 3|(22(𝑘+1)−1)

Therefore, we have 𝑃(𝑛) for all 𝑛 ∈ ℕ by the principle of induction.



Claim: 3|(22𝑛−1) for all 𝑛 ∈ ℕ.

That inductive step might still seem like magic. 

It sometimes helps to run through examples, and look for patterns:

22⋅0 − 1 = 0 = 3 ⋅ 0

22⋅1 − 1 = 3 = 3 ⋅ 1

22⋅2 − 1 = 15 = 3 ⋅ 5

22⋅3 − 1 = 63 = 3 ⋅ 21

22⋅4 − 1 = 255 = 3 ⋅ 85

22⋅5 − 1 = 1023 = 3 ⋅ 341

The divisor goes from 𝑘 to 4𝑘 + 1
0 → 4 ⋅ 0 + 1 = 1
1 → 4 ⋅ 1 + 1 = 5
5 → 4 ⋅ 5 + 1 = 21

…

That might give us a hint that 4𝑘 + 1 will be 

in the algebra somewhere, and give us 

another intermediate target.



Induction: Hats!

You have 𝑛 people in a line (𝑛 ≥ 2). Each of them wears either a purple 
hat or a gold hat. The person at the front of the line wears a purple hat. 
The person at the back of the line wears a gold hat. 

Show that for every arrangement of the line satisfying the rule above, 
there is a person with a purple hat next to someone with a gold hat. 

Yes this is kinda obvious. I promise this is good induction practice.

Yes you could argue this by contradiction. I promise this is good 
induction practice.



Induction: Hats!

Define 𝑃(𝑛) to be “in every line of 𝑛 people with gold and purple hats, with a 
purple hat at one end and a gold hat at the other, there is a person with a 
purple hat next to someone with a gold hat”

We show 𝑃(𝑛) for all integers 𝑛 ≥ 2 by induction on 𝑛.

Base Case: 𝑛 = 2

Inductive Hypothesis:

Inductive Step: 

By the principle of induction, we have 𝑃(𝑛) for all 𝑛 ≥ 2



Induction: Hats!

Define 𝑃(𝑛) to be “in every line of 𝑛 people with gold and purple hats, with a purple hat at one end 
and a gold hat at the other, there is a person with a purple hat next to someone with a gold hat”

We show 𝑃(𝑛) for all integers 𝑛 ≥ 2 by induction on 𝑛.

Base Case: 𝑛 = 2 The line must be just a person with a purple hat and a person with a gold hat, who 
are next to each other. 

Inductive Hypothesis: Suppose 𝑃(𝑘) holds for an arbitrary 𝑘 ≥ 2.

Inductive Step: Consider an arbitrary line with 𝑘 + 1 people in purple and gold hats, with a gold hat at 
one end and a purple hat at the other.

Target: there is someone in a purple hat next to someone in a gold hat.

By the principle of induction, we have 𝑃(𝑛) for all 𝑛 ≥ 2



Induction: Hats!

Define 𝑃(𝑛) to be “in every line of 𝑛 people with gold and purple hats, with a purple hat at one end 
and a gold hat at the other, there is a person with a purple hat next to someone with a gold hat”

We show 𝑃(𝑛) for all integers 𝑛 ≥ 2 by induction on 𝑛.

Base Case: 𝑛 = 2 The line must be just a person with a purple hat and a person with a gold hat, who 
are next to each other. 

Inductive Hypothesis: Suppose 𝑃(𝑘) holds for an arbitrary 𝑘 ≥ 2.

Inductive Step: Consider an arbitrary line with 𝑘 + 1 people in purple and gold hats, with a gold hat at 
one end and a purple hat at the other.

Case 1: There is someone with a purple hat next to the person in the gold hat at one end. Then those 
people are the required adjacent opposite hats.

Case 2:. There is a person with a gold hat next to the person in the gold hat at the end. Then the line 
from the second person to the end is length 𝑘, has a gold hat at one end and a purple hat at the 
other. Applying the inductive hypothesis, there is an adjacent, opposite-hat wearing pair.

In either case we have 𝑃(𝑘 + 1).

By the principle of induction, we have 𝑃(𝑛) for all 𝑛 ≥ 2



Fibonacci Inequality Two

Show that 𝑓 𝑛 ≥ 2𝑛/2 for all 𝑛 ≥ 2 by induction.

[Define 𝑃(𝑛)]

Base Cases: 

Inductive Hypothesis:

Inductive step: 

Therefore, we have 𝑃(𝑛) for all 𝑛 ≥ 0 by the principle of induction.

𝑓 0 = 1; 𝑓 1 = 1
𝑓 𝑛 = 𝑓 𝑛 − 1 + 𝑓(𝑛 − 2) for all 𝑛 ∈ ℕ, 𝑛 ≥ 2.



Fibonacci Inequality Two

Show that 𝑓 𝑛 ≥ 2𝑛/2 for all 𝑛 ≥ 2 by induction.

Define 𝑃(𝑛) to be “𝑓 𝑛 ≥ 2𝑛/2” We show 𝑃(𝑛) is true for all 𝑛 ≥ 2 by induction on 𝑛.

Base Cases: 𝑓 2 = 𝑓 1 + 𝑓 0 = 2 ≥ 2 = 21 = 22/2

𝑓 3 = 𝑓 2 + 𝑓 1 = 2 + 1 = 3 = 2 ⋅
3

2
≥ 2 2 = 21.5 = 23/2

Inductive Hypothesis: Suppose 𝑃 2 ∧ 𝑃 3 ∧ ⋯∧ 𝑃(𝑘) for an arbitrary 𝑘 ≥ 3.

Inductive step: 𝑓 𝑘 + 1 = 𝑓 𝑘 + 𝑓(𝑘 − 1) by the definition of the Fibonacci numbers. Applying IH 
twice, we have 

Target: 𝑓 𝑘 + 1 ≥ 2(𝑘+1)/2

Therefore, we have 𝑃(𝑛) for all 𝑛 ≥ 0 by the principle of induction.

𝑓 0 = 1; 𝑓 1 = 1
𝑓 𝑛 = 𝑓 𝑛 − 1 + 𝑓(𝑛 − 2) for all 𝑛 ∈ ℕ, 𝑛 ≥ 2.



Fibonacci Inequality Two

Show that 𝑓 𝑛 ≥ 2𝑛/2 for all 𝑛 ≥ 2 by induction.

Define 𝑃(𝑛) to be “𝑓 𝑛 ≥ 2𝑛/2” We show 𝑃(𝑛) is true for all 𝑛 ≥ 2 by induction on 𝑛.

Base Cases: 𝑓 2 = 𝑓 1 + 𝑓 0 = 2 ≥ 2 = 21 = 22/2

𝑓 3 = 𝑓 2 + 𝑓 1 = 2 + 1 = 3 = 2 ⋅
3

2
≥ 2 2 = 21.5 = 23/2

Inductive Hypothesis: Suppose 𝑃 2 ∧ 𝑃 3 ∧ ⋯∧ 𝑃(𝑘) for an arbitrary 𝑘 ≥ 3.

Inductive step: 𝑓 𝑘 + 1 = 𝑓 𝑘 + 𝑓(𝑘 − 1) by the definition of the Fibonacci numbers. Applying IH 
twice, we have 

𝑓 𝑘 + 1 ≥ 2𝑘/2 + 2(𝑘−1)/2

≥ 2(𝑘+1)/2

Therefore, we have 𝑃(𝑛) for all 𝑛 ≥ 0 by the principle of induction.

𝑓 0 = 1; 𝑓 1 = 1
𝑓 𝑛 = 𝑓 𝑛 − 1 + 𝑓(𝑛 − 2) for all 𝑛 ∈ ℕ, 𝑛 ≥ 2.



Fibonacci Inequality Two

Show that 𝑓 𝑛 ≥ 2𝑛/2 for all 𝑛 ≥ 2 by induction.

Define 𝑃(𝑛) to be “𝑓 𝑛 ≥ 2𝑛/2” We show 𝑃(𝑛) is true for all 𝑛 ≥ 2 by induction on 𝑛.

Base Cases: 𝑓 2 = 𝑓 1 + 𝑓 0 = 2 ≥ 2 = 21 = 22/2

𝑓 3 = 𝑓 2 + 𝑓 1 = 2 + 1 = 3 = 2 ⋅
3

2
≥ 2 2 = 21.5 = 23/2

Inductive Hypothesis: Suppose 𝑃 2 ∧ 𝑃 3 ∧ ⋯∧ 𝑃(𝑘) for an arbitrary 𝑘 ≥ 3.

Inductive step: 𝑓 𝑘 + 1 = 𝑓 𝑘 + 𝑓(𝑘 − 1) by the definition of the Fibonacci numbers. Applying IH 
twice, we have 

𝑓 𝑘 + 1 ≥ 2𝑘/2 + 2(𝑘−1)/2

= 2(𝑘−1)/2 2 + 1

≥ 2(𝑘−1)/2 ⋅ 2

≥ 2(𝑘+1)/2

Therefore, we have 𝑃(𝑛) for all 𝑛 ≥ 0 by the principle of induction.

𝑓 0 = 1; 𝑓 1 = 1
𝑓 𝑛 = 𝑓 𝑛 − 1 + 𝑓(𝑛 − 2) for all 𝑛 ∈ ℕ, 𝑛 ≥ 2.



More Practice



Even More Induction Practice

Let 𝑔 𝑛 = ቊ
1 if 𝑛 = 0

𝑛 ⋅ 𝑔 𝑛 − 1 otherwise

Let ℎ 𝑛 = 𝑛𝑛

Claim: ℎ 𝑛 ≥ 𝑔 𝑛 for all integers 𝑛 ≥ 1



Even More Induction Practice

Define 𝑃 𝑛 to be “h 𝑛 ≥ 𝑔(𝑛) for all integers 𝑛 ≥ 1

We show 𝑃(𝑛) for all 𝑛 ≥ 1 by induction on 𝑛.

Base Case

Inductive Hypothesis:

Inductive Step: 

Thus 𝑃 𝑘 + 1 holds. 

Therefore, we have 𝑃(𝑛) for all 𝑛 ≥ 1 by induction on 𝑛. Let 𝑔 𝑛 = ቊ
1 if 𝑛 = 0

𝑛 ⋅ 𝑔 𝑛 − 1 otherwise

Let ℎ 𝑛 = 𝑛𝑛



Even More Induction Practice

Define 𝑃 𝑛 to be “h 𝑛 ≥ 𝑔(𝑛) for all integers 𝑛 ≥ 1

We show 𝑃(𝑛) for all 𝑛 ≥ 1 by induction on 𝑛.

Base Case 𝑛 = 1 : ℎ 𝑛 = 11 = 1 ≥ 1 = 1 ⋅ 1 = 1 ⋅ 𝑔 0 = 𝑔(1).

Inductive Hypothesis: Suppose 𝑃(𝑘) is true for an arbitrary 𝑘 ≥ 1.

Inductive Step: 

𝑔 𝑘 + 1 = 𝑘 + 1 ⋅ 𝑔 𝑘

= 𝑘 + 1 𝑘+1.

Thus 𝑃 𝑘 + 1 holds. 

Therefore, we have 𝑃(𝑛) for all 𝑛 ≥ 1 by induction on 𝑛. Let 𝑔 𝑛 = ቊ
1 if 𝑛 = 0

𝑛 ⋅ 𝑔 𝑛 − 1 otherwise

Let ℎ 𝑛 = 𝑛𝑛



Even More Induction Practice

Define 𝑃 𝑛 to be “h 𝑛 ≥ 𝑔(𝑛) for all integers 𝑛 ≥ 1

We show 𝑃(𝑛) for all 𝑛 ≥ 1 by induction on 𝑛.

Base Case 𝑛 = 1 : ℎ 𝑛 = 11 = 1 ≥ 1 = 1 ⋅ 1 = 1 ⋅ 𝑔 0 = 𝑔(1).

Inductive Hypothesis: Suppose 𝑃(𝑘) is true for an arbitrary 𝑘 ≥ 1.

Inductive Step: 

𝑔 𝑘 + 1 = 𝑘 + 1 ⋅ 𝑔 𝑘

≤ 𝑘 + 1 ⋅ ℎ(𝑘) by IH.

= 𝑘 + 1 𝑘+1.

Thus 𝑃 𝑘 + 1 holds. 

Therefore, we have 𝑃(𝑛) for all 𝑛 ≥ 1 by induction on 𝑛. Let 𝑔 𝑛 = ቊ
1 if 𝑛 = 0

𝑛 ⋅ 𝑔 𝑛 − 1 otherwise

Let ℎ 𝑛 = 𝑛𝑛



Even More Induction Practice

Define 𝑃 𝑛 to be “h 𝑛 ≥ 𝑔(𝑛) for all integers 𝑛 ≥ 1

We show 𝑃(𝑛) for all 𝑛 ≥ 1 by induction on 𝑛.

Base Case 𝑛 = 1 : ℎ 𝑛 = 11 = 1 ≥ 1 = 1 ⋅ 1 = 1 ⋅ 𝑔 0 = 𝑔(1).

Inductive Hypothesis: Suppose 𝑃(𝑘) is true for an arbitrary 𝑘 ≥ 1.

Inductive Step: 

𝑔 𝑘 + 1 = 𝑘 + 1 ⋅ 𝑔 𝑘

≤ 𝑘 + 1 ⋅ ℎ(𝑘) by IH.

≤ 𝑘 + 1 ⋅ 𝑘𝑘 by definition of ℎ(𝑘)

≤ 𝑘 + 1 ⋅ 𝑘 + 1 𝑘

= 𝑘 + 1 𝑘+1.

Thus 𝑃 𝑘 + 1 holds. 

Therefore, we have 𝑃(𝑛) for all 𝑛 ≥ 1 by induction on 𝑛. Let 𝑔 𝑛 = ቊ
1 if 𝑛 = 0

𝑛 ⋅ 𝑔 𝑛 − 1 otherwise

Let ℎ 𝑛 = 𝑛𝑛



Even More Induction Practice

Define 𝑃 𝑛 to be “h 𝑛 ≥ 𝑔(𝑛) for all integers 𝑛 ≥ 1

We show 𝑃(𝑛) for all 𝑛 ≥ 1 by induction on 𝑛.

Base Case 𝑛 = 1 : ℎ 𝑛 = 11 = 1 ≥ 1 = 1 ⋅ 1 = 1 ⋅ 𝑔 0 = 𝑔(1).

Inductive Hypothesis: Suppose 𝑃(𝑘) is true for an arbitrary 𝑘 ≥ 1.

Inductive Step: 

𝑔 𝑘 + 1 = 𝑘 + 1 ⋅ 𝑔 𝑘

≤ 𝑘 + 1 ⋅ ℎ(𝑘) by IH.

≤ 𝑘 + 1 ⋅ 𝑘𝑘 by definition of ℎ(𝑘)

≤ 𝑘 + 1 ⋅ 𝑘 + 1 𝑘

= 𝑘 + 1 𝑘+1.

Thus 𝑃 𝑘 + 1 holds. 

Therefore, we have 𝑃(𝑛) for all 𝑛 ≥ 1 by induction on 𝑛. Let 𝑔 𝑛 = ቊ
1 if 𝑛 = 0

𝑛 ⋅ 𝑔 𝑛 − 1 otherwise

Let ℎ 𝑛 = 𝑛𝑛



Even More Induction Practice: Sums

Let 𝑃(𝑛) be σ𝑖=0
𝑛 2 + 3𝑖 =

𝑛+1 3𝑛+4

2

Show 𝑃(𝑛) for all 𝑛 ∈ ℕ by induction on 𝑛.

Base Case (𝑛 = 0):

Inductive Hypothesis:

Inductive Step: 

[Conclusion]



Even More Induction Practice: Sums

Let 𝑃(𝑛) be σ𝑖=0
𝑛 2 + 3𝑖 =

𝑛+1 3𝑛+4

2

Show 𝑃(𝑛) for all 𝑛 ∈ ℕ by induction on 𝑛.

Base Case (𝑛 = 0): σ𝑖=0
0 2 + 3𝑖 = 2 =

4

2
=

0+1 3⋅0+4

2

Inductive Hypothesis: Suppose 𝑃(𝑘) is true for an arbitrary 𝑘 ≥ 0.

Inductive Step: 

Target: σ𝑖=0
𝑘+1 2 + 3𝑖 =

k+1 +1 3 k+1 +4

2



Even More Induction Practice: Sums

Let 𝑃(𝑛) be σ𝑖=0
𝑛 2 + 3𝑖 =

𝑛+1 3𝑛+4

2

Show 𝑃(𝑛) for all 𝑛 ∈ ℕ by induction on 𝑛.

Base Case (𝑛 = 0): σ𝑖=0
0 2 + 3𝑖 = 2 =

4

2
=

0+1 3⋅0+4

2

Inductive Hypothesis: Suppose 𝑃(𝑘) is true for an arbitrary 𝑘 ≥ 0.

Inductive Step: 

σ𝑖=0
𝑘+1 2 + 3𝑖 = (σ𝑖=0

𝑘 2 + 3𝑖) + 2 + 3 𝑘 + 1 . By IH, we have:

σ𝑖=0
𝑘+1 2 + 3𝑖 =

k+1 3k+4

2
+ 2 + 3k + 3 =? ? ? ?

=
k + 1 + 1 3 k + 1 + 4

2



Even More Induction Practice: Sums

Let 𝑃(𝑛) be σ𝑖=0
𝑛 2 + 3𝑖 =

𝑛+1 3𝑛+4

2

Show 𝑃(𝑛) for all 𝑛 ∈ ℕ by induction on 𝑛.

Base Case (𝑛 = 0): σ𝑖=0
0 2 + 3𝑖 = 2 =

4

2
=

0+1 3⋅0+4

2

Inductive Hypothesis: Suppose 𝑃(𝑘) is true for an arbitrary 𝑘 ≥ 0.

Inductive Step: 

σ𝑖=0
𝑘+12 + 3𝑖 = (σ𝑖=0

𝑘 2 + 3𝑖) + 2 + 3 𝑘 + 1 . By IH, we have:

σ𝑖=0
𝑘+12 + 3𝑖 =

k+1 3k+4

2
+ 2 + 3k + 3 =

3k2+7k+4

2
+

6k+10

2
=

3k2+13k+14

2
=

3k+7 k+2

2
=

k+1 +1 3 k+1 +4

2

Therefore, 𝑃(𝑛) holds for all 𝑛 ∈ ℕ by induction on 𝑛.


