Section 07: Solutions

1. Induction with Inequality

Prove that 6n + 6 < 2" for all n > 6. Solution:

Let P(n) be “6n + 6 < 2"”. We will prove P(n) for all integers n > 6 by induction on n
Base Case (n =6): 66+ 6 =42 < 64 = 2°, so P(6) holds.
Inductive Hypothesis: Assume that 6k + 6 < 2* for an arbitrary integer k > 6.

Inductive Step: | Goal: Show 6(k + 1) 4+ 6 < 2¢F!

6(k+1)+6=06k+6+6

<2¢ 16 [Inductive Hypothesis]

< 2k 4 ok [Since 2% > 6, since k > 6]
=2.2F

— 2k+1

So P(k) — P(k + 1) for an arbitrary integer k > 6.

Conclusion: P(n) holds for all integers n > 6 by the principle of induction.

2. Induction with Formulas
These problems are a little more difficult and abstract. Try making sure you can do all the other problems before
trying these ones.

(a) (i) Show that given two sets A and B that AU B = AN B. (Don’t use induction.)

Solution:

Let x be arbitrary. Then,

re€ AUB=-(x € AUB) [Definition of complement]
=-(r€AVvzeB) [Definition of union]
=-(x € A)A—(z € B) [De Morgan’s Laws]
=rcAANzEB [Definition of complement]
=z € (ANB) [Definition of intersection]

Since z was arbitrary we have that x € AU B if and only if z € AN B for all . By the definition of
set equality we’ve shown,

AUB=ANB.

(i) Show using induction that for an integer n > 2, given n sets Ay, As, ..., A,_1, A, that

ATUA U UA, UA, =A NA;N---NA4,_1NA,

Solution:



Let P(n) be “given n sets Ay, Ay, ..., A,_1, A, it holds that A,y UA, U---UA, = A;NA;N---N
An—1 NA,.” We show P(n) for all integers n > 2 by induction on n.

Base Case: P(2) says that for two sets A; and A, that A; U Ay = A; N A,, which is exactly part (a)
so P(2) holds.

Inductive Hypothesis: Suppose that P(k) holds for some arbitrary integer & > 2.

Inductive Step: Let A, As, ..., Ay, Axy1 be sets. Then by part (a) we have,

(A1UA2U"'UAk)UAk+1:A1UA2U~~~UAkﬂAk+1.

By the inductive hypothesis we have A; UA; U--- A, = AN Ay N ---N Ag. Thus,

AlUAQU"'UAk;ﬁAk+1:<A710A720"'A7k;)ﬁ14k+1.

We’ve now shown

AlUA U UALUA 1 =ANAyN - AN A,

which is exactly P(k + 1).

Conclusion P(n) holds for all integers n > 2 by the principle of induction.

(b) () Show that given any integers a, b, and ¢, if ¢ | a and ¢ | b, then ¢ | (a + b). (Don’t use induction.)

Solution:

Let a, b, and c be arbitrary integers and suppose that ¢ | a and ¢ | b. Then by definition there exist
integers j and k such that a = jcand b = kc. Then a+ b = je+ ke = (j + k)c. Since j + k is an
integer, by definition we have c | (a + b).

(i) Show using induction that for any integer n > 2, given n numbers ay, as, ..., a,_1, a,, for any integer ¢
such that ¢ | a; fori =1,2,...,n, that

cl(ar+as+- - +an—1+ay).
In other words, if a number divides each term in a sum then that number divides the sum.

Solution:

Let P(n) be “given n numbers ay, as, ..., an—1, an, for any integer ¢ such that ¢ | a; fori =1,2,...,n,
it holds that ¢ | (a1 + a2 + -+ + a,).” We show P(n) holds for all integer n > 2 by induction on n.

Base Case: P(2) says that given two integers a; and as, for any integer ¢ such that ¢ | a; and ¢ | a9
it holds that ¢ | (a1 + az). This is exactly part (a) so P(2) holds.

Inductive Hypothesis: Suppose that P(k) holds for some arbitrary integer k > 2.
Inductive Step: Let aj,as,...,a,ar+1 be k + 1 integers. Let ¢ be arbitrary and suppose that ¢ | a;
fori=1,2,...,k+ 1. Then we can write

ap+az+ -t ap +app = (a1 +az+ -+ ag) + apgr.

The sum a1 + a9 + -+ - + ax has k terms and c¢ divides all of them, meaning we can apply the
inductive hypothesis. It says that ¢ | (a1 +as+---+ay). Sincec | (a1 +az2+---+ax) and ¢ | ag41,
by part (a) we have,

cl(ay+az+---+ap + apy1).




This shows P(k + 1).

Conclusion: P(n) holds for all integers n > 2 by induction the principle of induction.

Structural Induction

(a) Consider the following recursive definition of strings.

Basis Step: is a string

Recursive Step: If X is a string and c is a character then append(c, X) is a string.

Recall the following recursive definition of the function len:
len("") =0
len(append(c, X)) =1+ len(X)

Now, consider the following recursive definition:
dOUble("") —
double(append(c, X)) = append(c,append(c, double(

Prove that for any string X, len(double(X)) = 2len(X).

Solution:

X)))-

For a string X, let P(X) be “len(double(X)) = 2len(X)”. We prove P(X) for
induction on X.

Inductive Hypothesis: Suppose P(X) holds for some arbitrary string X.

Inductive Step: ‘ Goal: Show that P(append(c, X)) holds for any character c. ‘

len(double(append(c, X))) = len(append(c,append(c, double(X))))
=1+ len(append(c,double(X)))
=1+ 1+ len(double(X))
=2+ 2len(X)
=2(1+ len(X))
= 2(len(append(c, X)))

This proves P(append(c, X)).

Conclusion: P(X) holds for all strings X by structural induction.

all strings X by structural

Base Case (X = ""): By definition, len(double("")) = len("") =0=2-0 = 2len(""), so P("") holds

[By Definition of double]
[By Definition of len]

[By Definition of len]

[By IH]

[Algebra]

[By Definition of len]

(b) Consider the following definition of a (binary) Tree:
Basis Step: e is a Tree.

Recursive Step: If L is a Tree and R is a Tree then Tree(e, L, R) is a Tree.

The function leaves returns the number of leaves of a Tree. It is defined as follows:

leaves(e) =1
leaves(Tree(e, L, R)) = leaves(L) + leaves(R)




Also, recall the definition of size on trees:
size(e) =1

size(Tree(e,L,R)) =1+size(L)+ size(R)

Prove that leaves(T') > size(T)/2 + 1/2 for all Trees T..

Solution:

Foratree T, let P(T) be leaves(T') > size(T")/2+1/2. We prove P(T) for all trees T' by structural induction
onT.

Base Case (T = o): By definition of leaves(e), leaves(e) = 1 and size(e) = 1. So, leaves(e) = 1 >
1/2+41/2 = size(e)/2 + 1/2, so P(e) holds.

Inductive Hypothesis: Suppose P(L) and P(R) hold for some arbitrary trees L, R.

Inductive Step: ‘Goal: Show that P(Tree(e, L, R)) holds. ‘

leaves(Tree(e, L, R)) = leaves(L) + leaves(R) [By Definition of leaves]
> (size(L)/2 4+ 1/2) + (size(R)/2+1/2)  [ByIH]
= (1/2 +size(L)/2 + size(R)/2) + 1/2 [By Algebra]
1+ size(L) + size(R)

— 5 +1/2 [By Algebra]

=size(T)/2+ 1/2 [By Definition of size]

This proves P(Tree(e, L, R)).

Conclusion: Thus, P(7) holds for all trees T by structural induction.

(c) Prove the previous claim using strong induction. Define P(n) as “all trees T of size n satisfy leaves(T) >
size(T")/2 + 1/2”. You may use the following facts:

* For any tree T we have size(T) > 1.
* For any tree 7', size(T) = 1 if and only if T = e.
If we wanted to prove these claims, we could do so by structural induction.
Note, in the inductive step you should start by letting 7" be an arbitrary tree of size k + 1.

Solution:

Let P(n) be “all trees T of size n satisfy leaves(T) > size(T)/2 + 1/2”. We show P(n) for all integers
n > 1 by strong induction on n.

Base Case: Let T be an arbitrary tree of size 1. The only tree with size 1 is o, so T' = e. By definition,
leaves(T') = leaves(e) = 1 and thus size(T) = 1 = 1/2 + 1/2 = size(T)/2 + 1/2. This shows the
base case holds.

Inductive Hypothesis: Suppose that P(j) holds for all integers j = 1,2,..., k for some arbitrary integer
k>1.

Inductive Step: Let T be an arbitrary tree of size k + 1. Since k¥ + 1 > 1, we must have T # e. It follows
from the definition of a tree that T = Tree(e, L, R) for some trees L and R. By definition, we have
size(T) = 1+size(L) + size(R). Since sizes are non-negative, this equation shows size(7T") > size(L)
and size(T) > size(R) meaning we can apply the inductive hypothesis. This says that leaves(L) >
size(L)/2 + 1/2 and leaves(R) > size(R)/2 + 1/2.




We have,

leaves(T') = leaves(Tree(e, L, R))

= leaves(L) + leaves(R) [By Definition of leaves]
> (size(L)/2 + 1/2) + (size(R)/2 4+ 1/2) [By IH]

= (1/2 +size(L)/2 + size(R)/2) + 1/2 [By Algebra]

_ 14 S|ze(L;+ size(R) 172 [By Algebra]
=size(T)/2+1/2 [By Definition of size]

This shows P(k + 1).
Conclusion: P(n) holds for all integers n > 1 by the principle of strong induction.

Note, this proves the claim for all trees because every tree T has some size s > 1. Then P(s) says that all
trees of size s satisfy the claim, including 7.
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