
Section 07: Solutions

1. Induction with Inequality

Prove that 6n+ 6 < 2n for all n ≥ 6. Solution:

Let P (n) be “6n+ 6 < 2n”. We will prove P (n) for all integers n ≥ 6 by induction on n

Base Case (n = 6): 6 · 6 + 6 = 42 < 64 = 26, so P (6) holds.

Inductive Hypothesis: Assume that 6k + 6 < 2k for an arbitrary integer k ≥ 6.

Inductive Step: Goal: Show 6(k + 1) + 6 < 2k+1

6(k + 1) + 6 = 6k + 6 + 6

< 2k + 6 [Inductive Hypothesis]

< 2k + 2k [Since 2k > 6, since k ≥ 6]

= 2 · 2k

= 2k+1

So P (k) → P (k + 1) for an arbitrary integer k ≥ 6.

Conclusion: P (n) holds for all integers n ≥ 6 by the principle of induction.

2. Induction with Formulas

These problems are a little more difficult and abstract. Try making sure you can do all the other problems before
trying these ones.

(a) (i) Show that given two sets A and B that A ∪B = A ∩B. (Don’t use induction.)

Solution:

Let x be arbitrary. Then,

x ∈ A ∪B ≡ ¬(x ∈ A ∪B) [Definition of complement]

≡ ¬(x ∈ A ∨ x ∈ B) [Definition of union]

≡ ¬(x ∈ A) ∧ ¬(x ∈ B) [De Morgan’s Laws]

≡ x ∈ A ∧ x ∈ B [Definition of complement]

≡ x ∈ (A ∩B) [Definition of intersection]

Since x was arbitrary we have that x ∈ A ∪B if and only if x ∈ A ∩ B for all x. By the definition of
set equality we’ve shown,

A ∪B = A ∩B.

(ii) Show using induction that for an integer n ≥ 2, given n sets A1, A2, . . . , An−1, An that

A1 ∪A2 ∪ · · · ∪An−1 ∪An = A1 ∩A2 ∩ · · · ∩An−1 ∩An

Solution:
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Let P (n) be “given n sets A1, A2, . . . , An−1, An it holds that A1 ∪A2 ∪ · · · ∪An = A1 ∩ A2 ∩ · · · ∩
An−1 ∩An.” We show P (n) for all integers n ≥ 2 by induction on n.

Base Case: P (2) says that for two sets A1 and A2 that A1 ∪A2 = A1 ∩A2, which is exactly part (a)
so P (2) holds.

Inductive Hypothesis: Suppose that P (k) holds for some arbitrary integer k ≥ 2.

Inductive Step: Let A1, A2, . . . , Ak, Ak+1 be sets. Then by part (a) we have,

(A1 ∪A2 ∪ · · · ∪Ak) ∪Ak+1 = A1 ∪A2 ∪ · · · ∪Ak ∩Ak+1.

By the inductive hypothesis we have A1 ∪A2 ∪ · · ·Ak = A1 ∩A2 ∩ · · · ∩Ak. Thus,

A1 ∪A2 ∪ · · · ∪Ak ∩Ak+1 = (A1 ∩A2 ∩ · · ·Ak) ∩Ak+1.

We’ve now shown

A1 ∪A2 ∪ · · · ∪Ak ∪Ak+1 = A1 ∩A2 ∩ · · ·Ak ∩Ak+1.

which is exactly P (k + 1).

Conclusion P (n) holds for all integers n ≥ 2 by the principle of induction.

(b) (i) Show that given any integers a, b, and c, if c | a and c | b, then c | (a+ b). (Don’t use induction.)

Solution:

Let a, b, and c be arbitrary integers and suppose that c | a and c | b. Then by definition there exist
integers j and k such that a = jc and b = kc. Then a + b = jc + kc = (j + k)c. Since j + k is an
integer, by definition we have c | (a+ b).

(ii) Show using induction that for any integer n ≥ 2, given n numbers a1, a2, . . . , an−1, an, for any integer c
such that c | ai for i = 1, 2, . . . , n, that

c | (a1 + a2 + · · ·+ an−1 + an).

In other words, if a number divides each term in a sum then that number divides the sum.

Solution:

Let P (n) be “given n numbers a1, a2, . . . , an−1, an, for any integer c such that c | ai for i = 1, 2, . . . , n,
it holds that c | (a1 + a2 + · · ·+ an).” We show P (n) holds for all integer n ≥ 2 by induction on n.

Base Case: P (2) says that given two integers a1 and a2, for any integer c such that c | a1 and c | a2
it holds that c | (a1 + a2). This is exactly part (a) so P (2) holds.

Inductive Hypothesis: Suppose that P (k) holds for some arbitrary integer k ≥ 2.

Inductive Step: Let a1, a2, . . . , ak, ak+1 be k + 1 integers. Let c be arbitrary and suppose that c | ai
for i = 1, 2, . . . , k + 1. Then we can write

a1 + a2 + · · ·+ ak + ak+1 = (a1 + a2 + · · ·+ ak) + ak+1.

The sum a1 + a2 + · · · + ak has k terms and c divides all of them, meaning we can apply the
inductive hypothesis. It says that c | (a1+a2+ · · ·+ak). Since c | (a1+a2+ · · ·+ak) and c | ak+1,
by part (a) we have,

c | (a1 + a2 + · · ·+ ak + ak+1).
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This shows P (k + 1).

Conclusion: P (n) holds for all integers n ≥ 2 by induction the principle of induction.

3. Structural Induction

(a) Consider the following recursive definition of strings.

Basis Step: "" is a string

Recursive Step: If X is a string and c is a character then append(c,X) is a string.

Recall the following recursive definition of the function len:

len("") = 0

len(append(c,X)) = 1 + len(X)

Now, consider the following recursive definition:

double("") = ""

double(append(c,X)) = append(c, append(c,double(X))).

Prove that for any string X, len(double(X)) = 2len(X).

Solution:

For a string X, let P(X) be “len(double(X)) = 2len(X)”. We prove P(X) for all strings X by structural
induction on X.

Base Case (X = ""): By definition, len(double("")) = len("") = 0 = 2 · 0 = 2len(""), so P("") holds

Inductive Hypothesis: Suppose P(X) holds for some arbitrary string X.

Inductive Step: Goal: Show that P(append(c,X)) holds for any character c.

len(double(append(c,X))) = len(append(c, append(c,double(X)))) [By Definition of double]

= 1 + len(append(c,double(X))) [By Definition of len]

= 1 + 1 + len(double(X)) [By Definition of len]

= 2 + 2len(X) [By IH]

= 2(1 + len(X)) [Algebra]

= 2(len(append(c,X))) [By Definition of len]

This proves P(append(c,X)).

Conclusion: P(X) holds for all strings X by structural induction.

(b) Consider the following definition of a (binary) Tree:

Basis Step: • is a Tree.

Recursive Step: If L is a Tree and R is a Tree then Tree(•, L,R) is a Tree.

The function leaves returns the number of leaves of a Tree. It is defined as follows:

leaves(•) = 1

leaves(Tree(•, L,R)) = leaves(L) + leaves(R)
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Also, recall the definition of size on trees:

size(•) = 1

size(Tree(•, L,R)) = 1 + size(L) + size(R)

Prove that leaves(T ) ≥ size(T )/2 + 1/2 for all Trees T .

Solution:

For a tree T , let P(T ) be leaves(T ) ≥ size(T )/2+1/2. We prove P(T ) for all trees T by structural induction
on T .

Base Case (T = •): By definition of leaves(•), leaves(•) = 1 and size(•) = 1. So, leaves(•) = 1 ≥
1/2 + 1/2 = size(•)/2 + 1/2, so P(•) holds.

Inductive Hypothesis: Suppose P(L) and P(R) hold for some arbitrary trees L,R.

Inductive Step: Goal: Show that P(Tree(•, L,R)) holds.

leaves(Tree(•, L,R)) = leaves(L) + leaves(R) [By Definition of leaves]
≥ (size(L)/2 + 1/2) + (size(R)/2 + 1/2) [By IH]

= (1/2 + size(L)/2 + size(R)/2) + 1/2 [By Algebra]

=
1 + size(L) + size(R)

2
+ 1/2 [By Algebra]

= size(T )/2 + 1/2 [By Definition of size]

This proves P(Tree(•, L,R)).

Conclusion: Thus, P(T ) holds for all trees T by structural induction.

(c) Prove the previous claim using strong induction. Define P (n) as “all trees T of size n satisfy leaves(T ) ≥
size(T )/2 + 1/2”. You may use the following facts:

• For any tree T we have size(T ) ≥ 1.

• For any tree T , size(T ) = 1 if and only if T = •.

If we wanted to prove these claims, we could do so by structural induction.

Note, in the inductive step you should start by letting T be an arbitrary tree of size k + 1.

Solution:

Let P (n) be “all trees T of size n satisfy leaves(T ) ≥ size(T )/2 + 1/2”. We show P (n) for all integers
n ≥ 1 by strong induction on n.

Base Case: Let T be an arbitrary tree of size 1. The only tree with size 1 is •, so T = •. By definition,
leaves(T ) = leaves(•) = 1 and thus size(T ) = 1 = 1/2 + 1/2 = size(T )/2 + 1/2. This shows the
base case holds.

Inductive Hypothesis: Suppose that P (j) holds for all integers j = 1, 2, . . . , k for some arbitrary integer
k ≥ 1.

Inductive Step: Let T be an arbitrary tree of size k + 1. Since k + 1 > 1, we must have T 6= •. It follows
from the definition of a tree that T = Tree(•, L,R) for some trees L and R. By definition, we have
size(T ) = 1+ size(L)+ size(R). Since sizes are non-negative, this equation shows size(T ) > size(L)
and size(T ) > size(R) meaning we can apply the inductive hypothesis. This says that leaves(L) ≥
size(L)/2 + 1/2 and leaves(R) ≥ size(R)/2 + 1/2.
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We have,

leaves(T ) = leaves(Tree(•, L,R))

= leaves(L) + leaves(R) [By Definition of leaves]
≥ (size(L)/2 + 1/2) + (size(R)/2 + 1/2) [By IH]

= (1/2 + size(L)/2 + size(R)/2) + 1/2 [By Algebra]

=
1 + size(L) + size(R)

2
+ 1/2 [By Algebra]

= size(T )/2 + 1/2 [By Definition of size]

This shows P (k + 1).

Conclusion: P (n) holds for all integers n ≥ 1 by the principle of strong induction.

Note, this proves the claim for all trees because every tree T has some size s ≥ 1. Then P (s) says that all
trees of size s satisfy the claim, including T .
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