A More Complicated Statement

"Robbie knows the Pythagorean Theorem if he is a mathematician and took geometry, and he is a mathematician or did not take geometry."

Is this a proposition?

We'd like to understand what this proposition means.

In particular, is it true?

Law of Implication

Implications are hard.

AND/OR/NOT make more intuitive sense to me... can we rewrite implications using just ANDs ORs and NOTs?

p	q	$p \rightarrow q$
Т	Т	Т
Т	F	F
F	Т	Т
F	F	Т

One approach: think "when is this implication false?" then negate it (you might want one of DeMorgan's Laws!

Properties of Logical Connectives

You don't have to memorize this list!

These identities hold for all propositions p, q, r

- Identity
 - $p \wedge T \equiv p$
 - $p \vee F \equiv p$
- Domination
 - $p \vee T \equiv T$
 - $p \wedge F \equiv F$
- Idempotent
 - $p \lor p \equiv p$
 - $p \wedge p \equiv p$
- Commutative
 - $p \lor q \equiv q \lor p$
 - $p \wedge q \equiv q \wedge p$

- Associative
 - $(p \lor q) \lor r \equiv r \lor (q \lor r)$
 - $(p \land q) \land r \equiv p \land (q \land r)$
- Distributive
 - $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$
 - $p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$
- Absorption
 - $p \lor (p \land q) \equiv p$
 - $p \land (p \lor q) \equiv p$
- Negation
 - $p \vee \neg p \equiv T$
 - $p \land \neg p \equiv F$

Our First Proof

 $(a \land b) \lor (\neg a \land b) \lor (\neg a \land \neg b) \equiv$

None of the rules look like this

Practice of Proof-Writing: **Big Picture**...WHY do we think this might be true?

The last two "pieces" came from the $\equiv (\neg a \lor b)$ vacuous proof lines...maybe the " $\neg a$ " came from there? Maybe that simplifies down to $\neg a$