Law of Implication

Implications are hard.

AND/OR/NOT make more intuitive sense to me... can we rewrite implications using just ANDs ORs and NOTs?

p	q	$p \rightarrow q$	
Т	Т	Τ	
Т	F	F	
F	Т	Т	
F	F	Т	

One approach: think "when is this implication false?" then negate it (you might want one of DeMorgan's Laws!

Converse, Contrapositive

Implication:

Contrapositive:

If it's raining, then I have my umbrella.

$$p \rightarrow q$$

 $\neg q \rightarrow \neg p$ If I don't have my umbrella, then it is not raining.

Converse:

Inverse:

If I have my umbrella, then it is raining.

$$q \rightarrow p$$

 $\neg p \rightarrow \neg q$ If it is not raining, then I don't have my umbrella.

How do these relate to each other?

р	q	p→q	q→p	¬p	¬q	$\neg p \rightarrow \neg q$	$\neg q \rightarrow \neg p$
Т	Т						
Т	F						
F	Т						
F	F						

Properties of Logical Connectives

These identities hold for all propositions p, q, r

- Identity
 - $p \wedge T \equiv p$
 - $p \vee F \equiv p$
- Domination
 - $p \lor T \equiv T$
 - $p \wedge F \equiv F$
- Idempotent
 - $p \lor p \equiv p$
 - $p \wedge p \equiv p$
- Commutative
 - $p \lor q \equiv q \lor p$
 - $p \wedge q \equiv q \wedge p$

- Associative
 - $(p \lor q) \lor r \equiv p \lor (q \lor r)$
 - $(p \land q) \land r \equiv p \land (q \land r)$
- Distributive
 - $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$
 - $p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$
- Absorption
 - $p \lor (p \land q) \equiv p$
 - $p \land (p \lor q) \equiv p$
- Negation
 - $p \vee \neg p \equiv T$
 - $p \land \neg p \equiv F$

Our First Proof

$$(a \land b) \lor (\neg a \land b) \lor (\neg a \land \neg b) \equiv$$

None of the rules look like this

Practice of Proof-Writing: **Big Picture**...WHY do we think this might be true?

The last two "pieces" came from the vacuous proof lines...maybe the " $\neg a$ " $\equiv (\neg a \lor b)$ came from there? Maybe that simplifies down to $\neg a$