## Law of Implication

Implications are hard.
AND/OR/NOT make more intuitive sense to me...
can we rewrite implications using just ANDs ORs and NOTs?

| $p$ | $q$ | $p \rightarrow q$ |
| :---: | :---: | :---: |
| T | T | T |
| T | F | F |
| F | T | T |
| F | F | T |

One approach: think "when is this implication false?" then negate it (you might want one of DeMorgan's Laws!

## Converse, Contrapositive <br> Implication:

If it's raining, then I have my umbrella.

$$
p \rightarrow q
$$

Converse:
If I have my umbrella then it is raining. $q \rightarrow p$

How do these relate to each other?

| $\boldsymbol{p}$ | $\boldsymbol{q}$ | $\mathbf{p} \rightarrow \boldsymbol{q}$ | $\boldsymbol{q} \rightarrow \boldsymbol{p}$ | $\neg \mathbf{p}$ | $\neg \boldsymbol{q}$ | $\neg \mathbf{p} \rightarrow \neg \boldsymbol{q}$ | $\neg \boldsymbol{q} \rightarrow \neg \boldsymbol{p}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| T | T |  |  |  |  |  |  |
| T | F |  |  |  |  |  |  |
| F | T |  |  |  |  |  |  |
| F | F |  |  |  |  |  |  |

## Properties of Logical Connectives

These identities hold for all propositions $p, q, r$

- Identity
- $p \wedge \mathrm{~T} \equiv p$
- $p \vee \mathrm{~F} \equiv p$
- Domination
- $p \vee \mathrm{~T} \equiv \mathrm{~T}$
- $p \wedge \mathrm{~F} \equiv \mathrm{~F}$
- Idempotent
- $p \vee p \equiv p$
- $p \wedge p \equiv p$
- Commutative
- $p \vee q \equiv q \vee p$
- $p \wedge q \equiv q \wedge p$
- Associative
- $(p \vee q) \vee r \equiv p \vee(q \vee r)$
- $(p \wedge q) \wedge r \equiv p \wedge(q \wedge r)$
- Distributive
- $p \wedge(q \vee r) \equiv(p \wedge q) \vee(p \wedge r)$
- $p \vee(q \wedge r) \equiv(p \vee q) \wedge(p \vee r)$
- Absorption
- $p \vee(p \wedge q) \equiv p$
- $p \wedge(p \vee q) \equiv p$
- Negation
- $p \vee \neg p \equiv \mathrm{~T}$
- $p \wedge \neg p \equiv \mathrm{~F}$


## Our First Proof

$(a \wedge b) \vee(\neg a \wedge b) \vee(\neg a \wedge \neg b) \equiv$

None of the rules look like this

Practice of Proof-Writing:
Big Picture...WHY do we think this
might be true?
The last two "pieces" came from the
vacuous proof lines...maybe the " $\neg a " \equiv(\neg a \vee b)$
came from there? Maybe that
simplifies down to $\neg a$

