
Proofs, 
Alternate Notation

CSE 311 Fall 2023

Lecture 4



Announcements

We’re putting resources on the resources page:

The list of logical equivalences

A Translation Tips reading (for going from English to Logic)
Might be useful if you’re still working on homework 1.

There’s a lot of other resources on the page that will be useful as we get 
further along (e.g. reference sheets for particular topics).

We’ll try to remind you about important ones, but it’s good to keep in 
mind that it’s there.

https://courses.cs.washington.edu/courses/cse311/23au/resources/
https://courses.cs.washington.edu/courses/cse311/23au/resources/logicalConnectPoster.pdf
https://courses.cs.washington.edu/courses/cse311/23au/resources/handout01-translation.pdf


Our First Proof



Our First Proof

We could make another truth table (you should! It’s a good exercise)

But we have another technique that is nicer. 

Let’s try that one
Then talk about why it’s another good option. 

We’re going to give an iron-clad guarantee that:

𝑝 ∧ 𝑞 ∨ ¬𝑝 ∧ 𝑞 ∨ ¬𝑝 ∧ ¬𝑞 ≡ ¬𝑝 ∨ 𝑞

i.e. that this is another valid “law of implication”



Our First Proof

This will be a long proof! Longer than most of the ones on homeworks.
I’m starting with a hard one so you see all the tricks.

This process will be easier if we change variables, we’re going to show

𝑎 ∧ 𝑏 ∨ ¬𝑎 ∧ 𝑏 ∨ ¬𝑎 ∧ ¬𝑏 ≡ ¬𝑎 ∨ 𝑏

How do we write a proof?

It’s not always plug-and-chug…we’ll be highlighting strategies 
throughout the quarter.

To start with:

Make sure we know what we want to show…



Our First Proof

𝑎 ∧ 𝑏 ∨ ¬𝑎 ∧ 𝑏 ∨ (¬𝑎 ∧ ¬𝑏)≡ 𝑝 ∧ 𝑞 ∨ [ ¬𝑝 ∧ 𝑞 ∨ ¬𝑝 ∧ ¬𝑞 ]
≡ 𝑝 ∧ 𝑞 ∨ ¬𝑝 ∧ 𝑞 ∨ ¬𝑞
≡ 𝑝 ∧ 𝑞 ∨ [¬𝑝 ∧ T]
≡ 𝑝 ∧ 𝑞 ∨ [¬𝑝]
≡ ¬𝑝 ∨ (𝑝 ∧ 𝑞)
≡ ¬𝑝 ∨ 𝑝 ∧ ¬𝑝 ∨ 𝑞
≡ T ∧ ¬𝑝 ∨ 𝑞
≡ ¬𝑝 ∨ 𝑞 ∧ T
≡ (¬𝑎 ∨ 𝑏)

None of the rules look like this

Practice of Proof-Writing:

Big Picture…WHY do we think this 

might be true? 

The last two “pieces” came from the 

vacuous proof lines…maybe the “¬𝑎” 

came from there? Maybe that 

simplifies down to ¬𝑎



Let’s apply a rule

¬𝑎 ∧ 𝑏 ∨ (¬𝑎 ∧ ¬𝑏)

The law says:

𝑝 ∧ 𝑞 ∨ 𝑟 ≡ 𝑝 ∧ 𝑞 ∨ (𝑝 ∧ 𝑟)

¬𝑎 ∧ 𝑏 ∨ ¬𝑎 ∧ ¬𝑏 ≡ ¬𝑎 ∧ (𝑏 ∨ ¬𝑏)



Our First Proof

𝑎 ∧ 𝑏 ∨ ¬𝑎 ∧ 𝑏 ∨ (¬𝑎 ∧ ¬𝑏)≡ 𝑝 ∧ 𝑞 ∨ [ ¬𝑝 ∧ 𝑞 ∨ ¬𝑝 ∧ ¬𝑞 ]
≡ 𝑝 ∧ 𝑞 ∨ ¬𝑝 ∧ 𝑞 ∨ ¬𝑞
≡ 𝑝 ∧ 𝑞 ∨ [¬𝑝 ∧ T]
≡ 𝑝 ∧ 𝑞 ∨ [¬𝑝]
≡ ¬𝑝 ∨ (𝑝 ∧ 𝑞)
≡ ¬𝑝 ∨ 𝑝 ∧ ¬𝑝 ∨ 𝑞
≡ T ∧ ¬𝑝 ∨ 𝑞

≡ ¬𝑝 ∨ 𝑞 ∧ T
≡ (¬𝑎 ∨ 𝑏)

None of the rules look like this

Practice of Proof-Writing:

Big Picture…WHY do we think this 

might be true? 

The last two “pieces” came from the 

vacuous proof lines…maybe the “¬𝑎” 

came from there? Maybe that 

simplifies down to ¬𝑎



Our First Proof

𝑎 ∧ 𝑏 ∨ ¬𝑎 ∧ 𝑏 ∨ (¬𝑎 ∧ ¬𝑏)≡ 𝑎 ∧ 𝑏 ∨ [ ¬𝑎 ∧ 𝑏 ∨ ¬𝑎 ∧ ¬𝑏 ]
≡ ¬𝑝 ∨ (𝑝 ∧ 𝑞)

≡

¬𝑝

∨ 𝑝

∧ ¬𝑝 ∨ 𝑞

≡ T ∧ ¬𝑝 ∨ 𝑞
≡ ¬𝑝 ∨ 𝑞 ∧ T
≡ (¬𝑎 ∨ 𝑏)

Set ourselves an intermediate goal.

Let’s try to simplify those last two 

pieces Associative law

Connect up the things we’re working on.



Our First Proof

𝑎 ∧ 𝑏 ∨ ¬𝑎 ∧ 𝑏 ∨ (¬𝑎 ∧ ¬𝑏)≡ 𝑎 ∧ 𝑏 ∨ [ ¬𝑎 ∧ 𝑏 ∨ ¬𝑎 ∧ ¬𝑏 ]
≡ 𝑎 ∧ 𝑏 ∨ ¬𝑎 ∧ 𝑏 ∨ ¬𝑏

≡ ¬𝑝 ∨ (𝑝 ∧ 𝑞)
≡ ¬𝑝 ∨ 𝑝 ∧ ¬𝑝 ∨ 𝑞
≡ T ∧ ¬𝑝 ∨ 𝑞
≡ ¬𝑝 ∨ 𝑞 ∧ T
≡ (¬𝑎 ∨ 𝑏)

Set ourselves an intermediate goal.

Let’s try to simplify those last two 

pieces

Distributive law

We think ¬𝑎 is important, let’s isolate it.



Our First Proof

𝑎 ∧ 𝑏 ∨ ¬𝑎 ∧ 𝑏 ∨ (¬𝑎 ∧ ¬𝑏)≡ 𝑎 ∧ 𝑏 ∨ [ ¬𝑎 ∧ 𝑏 ∨ ¬𝑎 ∧ ¬𝑏 ]
≡ 𝑎 ∧ 𝑏 ∨ ¬𝑎 ∧ 𝑏 ∨ ¬𝑏
≡ 𝑎 ∧ 𝑏 ∨ [¬𝑎 ∧ T]

≡ ¬𝑝 ∨ (𝑝 ∧ 𝑞)
≡ ¬𝑝 ∨ 𝑝 ∧ ¬𝑝 ∨ 𝑞
≡ T ∧ ¬𝑝 ∨ 𝑞
≡ ¬𝑝 ∨ 𝑞 ∧ T
≡ (¬𝑎 ∨ 𝑏)

Set ourselves an intermediate goal.

Let’s try to simplify those last two 

pieces

Negation

Should make things simpler.



Our First Proof

𝑎 ∧ 𝑏 ∨ ¬𝑎 ∧ 𝑏 ∨ (¬𝑎 ∧ ¬𝑏)≡ 𝑎 ∧ 𝑏 ∨ [ ¬𝑎 ∧ 𝑏 ∨ ¬𝑎 ∧ ¬𝑏 ]
≡ 𝑎 ∧ 𝑏 ∨ ¬𝑎 ∧ 𝑏 ∨ ¬𝑏
≡ 𝑎 ∧ 𝑏 ∨ [¬𝑎 ∧ T]
≡ 𝑎 ∧ 𝑏 ∨ [¬𝑎]
≡ ¬𝑝 ∨ (𝑝 ∧ 𝑞)

≡
¬𝑝
∨ 𝑝 ∧ ¬𝑝 ∨ 𝑞

≡ T ∧ ¬𝑝 ∨ 𝑞
≡ ¬𝑝 ∨ 𝑞 ∧ T
≡ (¬𝑎 ∨ 𝑏)

Set ourselves an intermediate goal.

Let’s try to simplify those last two 

pieces

Identity

Should make things simpler.



Our First Proof

𝑎 ∧ 𝑏 ∨ ¬𝑎 ∧ 𝑏 ∨ (¬𝑎 ∧ ¬𝑏)≡ 𝑎 ∧ 𝑏 ∨ [ ¬𝑎 ∧ 𝑏 ∨ ¬𝑎 ∧ ¬𝑏 ]
≡ 𝑎 ∧ 𝑏 ∨ ¬𝑎 ∧ 𝑏 ∨ ¬𝑏
≡ 𝑎 ∧ 𝑏 ∨ [¬𝑎 ∧ T]
≡ 𝑎 ∧ 𝑏 ∨ [¬𝑎]

≡ (¬𝑎 ∨ 𝑏)

Stay on target:

We met our intermediate goal.

Don‘t forget the final goal! 

We want to end up at ¬𝑎 ∨ 𝑏

If we apply the distribution rule,

We’d get a (¬𝑎 ∨ 𝑏)



Our First Proof

𝑎 ∧ 𝑏 ∨ ¬𝑎 ∧ 𝑏 ∨ (¬𝑎 ∧ ¬𝑏)≡ 𝑎 ∧ 𝑏 ∨ [ ¬𝑎 ∧ 𝑏 ∨ ¬𝑎 ∧ ¬𝑏 ]
≡ 𝑎 ∧ 𝑏 ∨ ¬𝑎 ∧ 𝑏 ∨ ¬𝑏
≡ 𝑎 ∧ 𝑏 ∨ [¬𝑎 ∧ T]
≡ 𝑎 ∧ 𝑏 ∨ [¬𝑎]
≡ ¬𝑎 ∨ (𝑎 ∧ 𝑏)

≡ (¬𝑎 ∨ 𝑏)

Commutative

Make the expression look exactly like the law (more on this later)

Stay on target:

We met our intermediate goal.

Don‘t forget the final goal! 

We want to end up at ¬𝑎 ∨ 𝑏

If we apply the distribution rule,

We’d get a (¬𝑎 ∨ 𝑏)



Our First Proof

𝑎 ∧ 𝑏 ∨ ¬𝑎 ∧ 𝑏 ∨ (¬𝑎 ∧ ¬𝑏)≡ 𝑎 ∧ 𝑏 ∨ [ ¬𝑎 ∧ 𝑏 ∨ ¬𝑎 ∧ ¬𝑏 ]
≡ 𝑎 ∧ 𝑏 ∨ ¬𝑎 ∧ 𝑏 ∨ ¬𝑏
≡ 𝑎 ∧ 𝑏 ∨ [¬𝑎 ∧ T]
≡ 𝑎 ∧ 𝑏 ∨ [¬𝑎]
≡ ¬𝑎 ∨ (𝑎 ∧ 𝑏)
≡ ¬𝑎 ∨ 𝑎 ∧ ¬𝑎 ∨ 𝑏

≡ (¬𝑎 ∨ 𝑏)

Distributive

Creates the (¬𝑎 ∨ 𝑏) we were hoping for.

Stay on target:

We met our intermediate goal.

Don‘t forget the final goal! 

We want to end up at ¬𝑎 ∨ 𝑏

If we apply the distribution rule,

We’d get a (¬𝑎 ∨ 𝑏)



Our First Proof

𝑎 ∧ 𝑏 ∨ ¬𝑎 ∧ 𝑏 ∨ (¬𝑎 ∧ ¬𝑏)≡ 𝑎 ∧ 𝑏 ∨ [ ¬𝑎 ∧ 𝑏 ∨ ¬𝑎 ∧ ¬𝑏 ]
≡ 𝑎 ∧ 𝑏 ∨ ¬𝑎 ∧ 𝑏 ∨ ¬𝑏
≡ 𝑎 ∧ 𝑏 ∨ [¬𝑎 ∧ T]
≡ 𝑎 ∧ 𝑏 ∨ [¬𝑎]
≡ ¬𝑎 ∨ (𝑎 ∧ 𝑏)
≡ ¬𝑎 ∨ 𝑎 ∧ ¬𝑎 ∨ 𝑏
≡ 𝑎 ∨ ¬𝑎 ∧ (¬𝑎 ∨ 𝑏)
≡ T ∧ ¬𝑎 ∨ 𝑏

≡ (¬𝑎 ∨ 𝑏)Commutative

Make the expression look exactly like the law (more on this later)
Negation

Simplifies the part we want to disappear.

Stay on target:

We met our intermediate goal.

Don‘t forget the final goal! 

We want to end up at ¬𝑎 ∨ 𝑏

If we apply the distribution rule,

We’d get a (¬𝑎 ∨ 𝑏)



• Identity

• 𝑝 ∧ T ≡ 𝑝
• 𝑝 ∨ F ≡ 𝑝

• Domination

• 𝑝 ∨ T ≡ T
• 𝑝 ∧ F ≡ F

• Idempotent

• 𝑝 ∨ 𝑝 ≡ 𝑝
• 𝑝 ∧ 𝑝 ≡ 𝑝

• Commutative

• 𝑝 ∨ 𝑞 ≡ 𝑞 ∨ 𝑝
• 𝑝 ∧ 𝑞 ≡ 𝑞 ∧ 𝑝

• Associative

• 𝑝 ∨ 𝑞 ∨ 𝑟 ≡ 𝑝 ∨ 𝑞 ∨ 𝑟
• 𝑝 ∧ 𝑞 ∧ 𝑟 ≡ 𝑝 ∧ 𝑞 ∧ 𝑟

• Distributive

• 𝑝 ∧ 𝑞 ∨ 𝑟 ≡ 𝑝 ∧ 𝑞 ∨ 𝑝 ∧ 𝑟
• 𝑝 ∨ 𝑞 ∧ 𝑟 ≡ 𝑝 ∨ 𝑞 ∧ (𝑝 ∨ 𝑟)

• Absorption

• 𝑝 ∨ 𝑝 ∧ 𝑞 ≡ 𝑝
• 𝑝 ∧ 𝑝 ∨ 𝑞 ≡ 𝑝

• Negation

• 𝑝 ∨ ¬𝑝 ≡ T
• 𝑝 ∧ ¬𝑝 ≡ F

These identities hold for all propositions 𝑝, 𝑞, 𝑟

Simplify T∧ (¬𝑎 ∨ 𝑏) to (¬𝑎 ∨ 𝑏)



Our First Proof

𝑎 ∧ 𝑏 ∨ ¬𝑎 ∧ 𝑏 ∨ (¬𝑎 ∧ ¬𝑏)≡ 𝑎 ∧ 𝑏 ∨ [ ¬𝑎 ∧ 𝑏 ∨ ¬𝑎 ∧ ¬𝑏 ]
≡ 𝑎 ∧ 𝑏 ∨ ¬𝑎 ∧ 𝑏 ∨ ¬𝑏
≡ 𝑎 ∧ 𝑏 ∨ [¬𝑎 ∧ T]
≡ 𝑎 ∧ 𝑏 ∨ [¬𝑎]
≡ ¬𝑎 ∨ (𝑎 ∧ 𝑏)
≡ ¬𝑎 ∨ 𝑎 ∧ ¬𝑎 ∨ 𝑏
≡ 𝑎 ∨ ¬𝑎 ∧ (¬𝑎 ∨ 𝑏)
≡ T ∧ ¬𝑎 ∨ 𝑏
≡ ¬𝑎 ∨ 𝑏 ∧ T
≡ (¬𝑎 ∨ 𝑏)Commutative followed by Identity 

Look exactly like the law, then apply it.

We’re done!!! 

Stay on target:

We met our intermediate goal.

Don‘t forget the final goal! 

We want to end up at ¬𝑎 ∨ 𝑏

If we apply the distribution rule,

We’d get a (¬𝑎 ∨ 𝑏)



Commutativity

We had the expression 𝑎 ∧ 𝑏 ∨ [¬𝑎]

But before we applied the distributive law, we switched the order…why?

The law says 𝑝 ∨ 𝑞 ∧ 𝑟 ≡ p ∨ 𝑞 ∧ (𝑝 ∨ 𝑟)

not 𝑞 ∧ 𝑟 ∨ 𝑝 ≡ 𝑞 ∨ 𝑝 ∧ (𝑟 ∨ 𝑝)

So technically we needed to commute first.

Eventually (in about 2 weeks) we’ll skip this step. For now, we’re doing 
two separate steps.
Remember this is the “training wheel” stage. The point is to be careful.



More on Our First Proof

We now have an ironclad guarantee that

𝑎 ∧ 𝑏 ∨ ¬𝑎 ∧ 𝑏 ∨ ¬𝑎 ∧ ¬𝑏 ≡ (¬𝑎 ∨ 𝑏)

Hooray! But we could have just made a truth-table. Why a proof?

Here’s one reason.

Proofs don’t just give us an ironclad guarantee. They’re also an 
explanation of why the claim is true.

The key insight to our simplification was “the last two pieces were the 
vacuous truth parts – the parts where 𝑝 was false” 

That’s in there, in the proof.



Our First Proof

𝑎 ∧ 𝑏 ∨ ¬𝑎 ∧ 𝑏 ∨ (¬𝑎 ∧ ¬𝑏)≡ 𝑎 ∧ 𝑏 ∨ [ ¬𝑎 ∧ 𝑏 ∨ ¬𝑎 ∧ ¬𝑏 ]
≡ 𝑎 ∧ 𝑏 ∨ ¬𝑎 ∧ 𝑏 ∨ ¬𝑏
≡ 𝑎 ∧ 𝑏 ∨ [¬𝑎 ∧ T]
≡ 𝑎 ∧ 𝑏 ∨ [¬𝑎]
≡ ¬𝑎 ∨ (𝑎 ∧ 𝑏)
≡ ¬𝑎 ∨ 𝑎 ∧ ¬𝑎 ∨ 𝑏
≡ 𝑎 ∨ ¬𝑎 ∧ (¬𝑎 ∨ 𝑏)
≡ T ∧ ¬𝑎 ∨ 𝑏
≡ ¬𝑎 ∨ 𝑏 ∧ T
≡ (¬𝑎 ∨ 𝑏)

Associative

Distributive

Negation

Identity

Commutative

Distributive

Commutative

Negation

Commutative

Identity

The last two terms are 

“vacuous truth” – they 

simplify to ¬𝑎

𝑎 no longer matters in 𝑎 ∧ 𝑏
if ¬𝑎 automatically makes 

the expression true.



More on Our First Proof

With practice (and quite a bit of squinting) you can see not just the 
ironclad guarantee, but also the reason why something is true.

That’s not easy with a truth table.

Proofs can also communicate intuition about why a statement is true.
We’ll practice extracting intuition from proofs more this quarter.



Digital Logic



Vocabulary!

Tautology if it is always true.

Contradiction if it is always false.

Contingency if it can be both true and false.

A proposition is a….

Tautology

If 𝑝 is true, 𝑝 ∨ ¬𝑝 is true; if 𝑝 is false, 𝑝 ∨ ¬𝑝 is true.

Contradiction

If 𝑝 is true, 𝑝⊕ 𝑝 is false; if 𝑝 is false, 𝑝⊕ 𝑝 is false.

Contingency If 𝑝 is true and 𝑞 is true, 𝑝 → 𝑞 ∧ 𝑝 is true; 

If 𝑝 is true and 𝑞 is false, 𝑝 → 𝑞 ∧ 𝑝 is false.

𝑝 ∨ ¬𝑝

𝑝⊕ 𝑝

𝑝 → 𝑞 ∧ 𝑝



On notation…

Logic is fundamental. Computer scientists use it in programs, 
mathematicians use it in proofs, engineers use it in hardware, 
philosophers use it in arguments,….

…so everyone uses different notation to represent the same ideas.

Since we don’t know exactly what you’re doing next, we’re going to 
show you a bunch of them; but don’t think one is “better” than the 
others!



Digital Circuits

Computing With Logic
T corresponds to 1 or “high” voltage 

F corresponds to 0 or “low” voltage

Gates 
Take inputs and produce outputs (functions)

Several kinds of gates

Correspond to propositional connectives (most of them)



And Gate

p q p  q

T T T

T F F

F T F

F F F

p q OUT

1 1 1

1 0 0

0 1 0

0 0 0

AND Connective AND Gate

q

p
OUTAND

“block looks like D of AND”

p
OUTAND

qp  q

vs.



Or Gate

p q p  q

T T T

T F T

F T T

F F F

p q OUT

1 1 1

1 0 1

0 1 1

0 0 0

OR Connective OR Gate

p
OUTOR

qp  q

vs.

p

q
OR

“arrowhead block looks like V”

OUT



Not Gates

p

NOT Gate

p  p

T F

F T

p OUT

1 0

0 1

vs.NOT Connective

Also called 

inverter

p OUTNOT

p OUTNOT



Blobs are Okay!

p OUTNOT

p
q

OUTAND

p
q

OUTOR

You may write gates using blobs instead of shapes!



Combinational Logic Circuits

Values get sent along wires connecting gates 

NOT

OR

AND

AND

NOT

p

q

r
s

OUT



Combinational Logic Circuits

Values get sent along wires connecting gates 

NOT

OR

AND

AND

NOT

p

q

r
s

OUT



Combinational Logic Circuits

Wires can send one value to multiple gates!

OR

AND

NOT

AND
p

q

r

OUT



Combinational Logic Circuits

Wires can send one value to multiple gates!

OR

AND

NOT

AND
p

q

r

OUT

𝑝 ∧ ¬𝑞 ∨ (¬𝑞 ∧ 𝑟)



More Practice

Some quarters, we spend about half-a-lecture building out a circuit to 
represent a moderately complicated function.

It’s 50% a way to practice with the different notation, 50% fun historical 
context (people used to build circuits by-hand a lot. It’s less common 
now – decent programs exist to do it now).

If you want to get that extra practice, I’ll post an extra video with that 
content. 
But you’ll also have practice in section if you would rather get the content that way.

There are no new principles/ideas here. Only new ways of representing 
them.



More Vocabulary



Meet Boolean Algebra

Preferred by some mathematicians and circuit designers.

“or” is +

“and” is ⋅ (i.e. “multiply”)

“not” is ‘ (an apostrophe after a variable)

Why?

Mathematicians like to study “operations that work kinda like ‘plus’ and 
‘times’ on integers.”

Circuit designers have a lot of variables, and this notation is more 
compact.



Meet Boolean Algebra

Name Variables “True/False” “And” “Or” “Not” Implication

Java Code boolean b true,false && || ! No special 

symbol

Propositional 

Logic

"𝑝, 𝑞, 𝑟" T, F ∧ ∨ ¬ →

Circuits Wires 1, 0 No special 

symbol

Boolean 

Algebra

𝑎, 𝑏, 𝑐 1,0 ⋅
(“multiplication”)

+
(“addition”)

′
(apostrophe 

after variable) 

No special 

symbol

𝑝 ∧ 𝑞 ∧ 𝑟 ∨ 𝑠 ∨ ¬𝑡 𝑝𝑞𝑟 + 𝑠 + 𝑡′

Propositional logic Boolean Algebra



Comparison

Remember this is just an alternate notation for the same underlying 
ideas.

So that big list of identities? Just change the notation and you get 
another big list of identities!
Sometimes names are different (“involution” instead of “double negation”), but the 
core ideas are the same.

𝑝 ∧ 𝑞 ∧ 𝑟 ∨ 𝑠 ∨ ¬𝑡 𝑝𝑞𝑟 + 𝑠 + 𝑡′

Propositional logic Boolean Algebra



Boolean Algebra



Boolean Algebra



Boolean Algebra



A Few Fun Facts

That you’re not responsible for:

The identities are divided into “axioms” and “theorems”

Mathematicians (and some computer scientists, like me ☺ ) will 
sometimes study what minimum starting points (“the axioms”) will be 
enough to derive all the usual facts we rely on (“the theorems”)
That’s what I meant by “operations that work kinda like plus and times”

For our purposes, we won’t make a distinction here, but we will use 
similar thinking later in the course. 

Boolean algebra makes things like commutativity axioms (starting 
points, things we assume) with propositional logic, we start from the 
truth tables and can derive that commutativity is true. For this class, 
though, it’s a fact you can use either way.



Why ANOTHER way of writing down logic?

This is the third one!?

Because, in your future courses, you’ll use any/all of them. 

Remember there aren’t new concepts here, just new representations.

We mostly use propositional notation (∧,∨, ¬,etc.) but we’ll use them all 
a bit so you’re ready for any of them in your future courses.

Practice in section and on homework.



Canonical Forms

Back to the old notation.



Canonical Forms

A truth table is a unique representation of a Boolean Function.
If you describe a function, there’s only one possible truth table for it.

Given a truth table you can find many circuits and many compound 
prepositions to represent it.
Think back to when we were developing the law of implication…

It would be nice to have a “standard” proposition (or standard circuit) 
we could always write as a starting point.
So we have a (possibly) shorter way of telling if we have the same function.



Using Our Rules

WOW that was a lot of rules.

Why do we need them? Simplification!

Let’s go back to the “law of implication” example. 

𝑝 𝑞 𝑝 → 𝑞

T T T

T F F

F T T

F F T

When is the implication true? Just “or” each of the three 

“true” lines!

𝑝 ∧ 𝑞 ∨ ¬𝑝 ∧ 𝑞 ∨ (¬𝑝 ∧ ¬𝑞)
Also seems pretty reasonable

So is 𝑝 ∧ 𝑞 ∨ ¬𝑝 ∧ 𝑞 ∨ ¬𝑝 ∧ ¬𝑞 ≡ (¬𝑝 ∨ 𝑞)
i.e. are these both alternative representations of 𝑝 → 𝑞?



Disjunctive Normal Form (DNF)

a.k.a. OR of ANDs

a.k.a Sum-of-Products Form

a.k.a. Minterm Expansion

1. Read the true rows of the truth table

2. AND together all the settings in a given (true) row.

3. OR together the true rows.



Disjunctive Normal Form

𝑝 𝑞 𝐺(𝑝, 𝑞)

T T T

T F F

F T T

F F F

1. Read the true rows of the truth table

2. AND together all the settings in a 

given (true) row.

3. OR together the true rows.
𝑝 ∧ 𝑞

¬𝑝 ∧ 𝑞

𝐺 𝑝, 𝑞 ≡ 𝑝 ∧ 𝑞 ∨ (¬𝑝 ∧ 𝑞)



Another Canonical Form

DNF is a great way to represent functions that are usually false.
If there are only a few true rows, the representation is short.

What about functions that are usually true?

Well 𝐺 is equivalent to ¬¬𝐺, and ¬𝐺 is a function that is usually false.

Let’s try taking the Sum-of-Products of ¬𝐺 and negating it.



Another Canonical Form

𝑝 𝑞 𝐺(𝑝, 𝑞) ¬𝐺(𝑝, 𝑞)

T T T F

T F F T

F T T F

F F F T

1. Read the true rows of the truth table

2. AND together all the settings in a 

given (true) row.

3. OR together the true rows.
𝑝 ∧ ¬𝑞

¬𝑝 ∧ ¬𝑞

¬𝐺 𝑝, 𝑞 ≡ 𝑝 ∧ ¬𝑞 ∨ (¬𝑝 ∧ ¬𝑞)
𝐺 𝑝, 𝑞 ≡ ¬[ 𝑝 ∧ ¬𝑞 ∨ ¬𝑝 ∧ ¬𝑞 ]
𝐺 𝑝, 𝑞 ≡ ¬ 𝑝 ∧ ¬𝑞 ∧ ¬ ¬𝑝 ∧ ¬𝑞

𝐺 𝑝, 𝑞 ≡ [ ¬𝑝 ∨ 𝑞 ∧ 𝑝 ∨ 𝑞 ]

This is not in 

Disjunctive 

Normal Form! 

It’s something 

else, though…



Conjunctive Normal Form

a.k.a. AND of ORs

a.k.a. Product-of-Sums Form

a.k.a. Maxterm Expansion

1. Read the false rows of the truth table

2. OR together the negations of all the settings in the false rows.

3. AND together the false rows.

Or take the DNF of the negation of the function you care about, and 
distribute the negation.



Normal Forms

Don’t simplify any further! Don’t factor anything out (even if you can). 
The point of the canonical form is we know exactly what it looks like, 
you might simplify differently than someone else.

Why? Easier to understand for people.
Inside the parentheses are only ORs between the parentheses are only ANDs (or 
vice versa). 

You’ll use these more in later courses.



Modifying Implications



Converse, Contrapositive

How do these relate to each other?

p q p → q q → p p q p →q q →p

T T

T F

F T

F F

Implication:

p → q

Converse: 

q → p

Contrapositive:

q →p

Inverse: 

p →q

If it’s raining, then I 

have my umbrella.

If I have my umbrella, 

then it is raining.

If I don’t have my umbrella, 

then it is not raining.

If it is not raining, then I 

don’t have my umbrella.



Converse, Contrapositive

An implication and its contrapositive

have the same truth value!

p q p → q q → p p q p →q q →p

T T T T F F T T

T F F T F T T F

F T T F T F F T

F F T T T T T T

Implication:

p → q

Converse: 

q → p

Contrapositive:

q →p

Inverse: 

p →q



Contrapositive

We showed 𝑝 → 𝑞 ≡ ¬𝑞 → ¬𝑝 with a truth table. Let’s do a proof.

Try this one on your own. Remember

1. Know what you’re trying to show.

2. Stay on target – take steps to get closer to your goal.

Hint: think about your tools. 

There are lots of rules with AND/OR/NOT, 

but very few with implications…

pollev.com/robbie

Help me adjust my explanation!



Contrapositive

𝑝 → 𝑞 ≡ ¬𝑝 ∨ 𝑞
≡ 𝑞 ∨ ¬𝑝
≡ ¬¬𝑞 ∨ ¬𝑝
≡ ¬𝑞 → ¬𝑝

Law of Implication

Commutativity

Double Negation

Law of Implication

All of our rules deal with ORs and ANDs, let’s switch the implication 

to just use AND/NOT/OR.

And do the same with our target

It’s ok to work from both ends. In fact it’s a very common 

strategy!

Now how do we get the top to look like the bottom? 

Just a few more rules and we’re done!



Work from both ends, but…

…make sure at the end, if you read from top-to-bottom, every step 
makes sense.

When proving an equivalence you must:
1. Start with the left side (or right side)

2. Modify what you had in the last step (using an equivalence)

3. Derive the right side (or left side if you started with the right)

You may not start with the equivalence you’re trying to show, and 
simplify to something “obviously true.” 
More on why later in the quarter, but tl;dr for now is you can’t use your goal as a 
starting assumption (it’s what you’re trying to show! If you knew it, no need to write 
a proof).


