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Announcements

HW1 solutions handed out in lecture today.

If you missed them, they are in an envelope outside my office door
CSE2 311---in Gates take the elevator to the 3rd floor, turn left.

Don’t need to wait for office hours, upper floors are unlocked 8-5 weekdays

HW2

Gradescope has separate boxes for Extra credit, feedback

Late Days are counted from later of main box, extra credit box 
submitted. (But it’s only one late day to resubmit both).

We don’t count late days for the feedback box (please just don’t forget 
to submit).



Quantifiers

∀𝑥[(Cat 𝑥 ∧ Fat 𝑥 ) →Happy 𝑥 ] ∀𝑥[Cat 𝑥 ∧(Fat 𝑥 →Happy 𝑥 )]

For all mammals, if 𝑥 is a cat and fat 

then it is happy

[if 𝑥 is not a cat, the claim is vacuously 

true, you can’t use the promise for 

anything]

For all mammals, that mammal is a cat 

and if it is fat then it is happy.

[what if 𝑥 is a dog? Dogs are in the 

domain, but…uh-oh. This isn’t what we 

meant.]

Which of these translates “For every cat: if a cat is fat then it is happy.” 

when our domain of discourse is “mammals”?

To “limit” variables to a portion of your domain of discourse 

under a universal quantifier add a hypothesis to an implication.



Quantifiers

Existential quantifiers need a different rule:

To “limit” variables to a portion of your domain of discourse under an existential 

quantifier AND the limitation together with the rest of the statement.

There is a dog who is not happy.

Domain of discourse: dogs
∃𝑥(¬ Happy(𝑥))



Quantifiers

∃𝑥[(Dog 𝑥 ∧ ¬Happy 𝑥 ]∃𝑥[Dog 𝑥 → ¬Happy 𝑥 )]

There is a mammal, such that if 𝑥 is a 

dog then it is not happy.

[this can’t be right – plug in a cat for 𝑥
and the implication is true]

There is a mammal that is both a dog 

and not happy.

[this one is correct!]

Which of these translates “There is a dog who is not happy.” 

when our domain of discourse is “mammals”?

To “limit” variables to a portion of your domain of discourse under an existential 

quantifier AND the limitation together with the rest of the statement.



Why are the rules what they are?

A universal quantifier is a “Big AND”

For a domain of discourse of {𝑒1, 𝑒2, … , 𝑒𝑘}

∀𝑥(𝑃 𝑥 ) means 𝑃 𝑒1 ∧ 𝑃 𝑒2 ∧ ⋯∧ 𝑃(𝑒𝑘)

Now let’s say our domain is {𝑒1, 𝑒2, … , 𝑒𝑘 , 𝑓1, 𝑓2, … , 𝑓𝑗} where 𝑓𝑖 are the 
irrelevant parts of the bigger domain (non-cat-mammals). We want the 
expression to be

𝑃 𝑒1 ∧ 𝑃 𝑒2 ∧ ⋯∧ 𝑃 𝑒𝑘 ∧ 𝑇 ∧ 𝑇…∧ 𝑇

∀𝑥(𝑅𝑖𝑔ℎ𝑡𝑆𝑢𝑏𝐷𝑜𝑚𝑎𝑖𝑛 𝑥 → 𝑃 𝑥 ) does that!



Why are the rules what they are?

An existential quantifier is a “Big OR”

For a domain of discourse of {𝑒1, 𝑒2, … , 𝑒𝑘}

∃𝑥(𝑃 𝑥 ) means 𝑃 𝑒1 ∨ 𝑃 𝑒2 ∨ ⋯∨ 𝑃(𝑒𝑘)

Now let’s say our domain is {𝑒1, 𝑒2, … , 𝑒𝑘 , 𝑓1, 𝑓2, … , 𝑓𝑗} where 𝑓𝑖 are the 
irrelevant parts of the bigger domain (non-dog-mammals). We want the 
expression to be

𝑃 𝑒1 ∨ 𝑃 𝑒2 ∨ ⋯∨ 𝑃 𝑒𝑘 ∨ 𝐹 ∨ 𝐹 …∨ 𝐹

∃𝑥(𝑅𝑖𝑔ℎ𝑡𝑆𝑢𝑏𝐷𝑜𝑚𝑎𝑖𝑛 𝑥 ∧ 𝑃 𝑥 ) does that!



Negating Quantifiers

What happens when we negate an expression with quantifiers?

What does your intuition say?

Original
Negation

Every positive integer is prime There is a positive integer that is not prime.

∀𝑥 Prime(𝑥)

Domain of discourse: positive integers

∃𝑥(¬ Prime(𝑥))

Domain of discourse: positive integers



Negating Quantifiers

Let’s try on an existential quantifier…

There is a positive integer which is prime 

and even.

Original Negation

∃𝑥(Prime 𝑥 ∧ Even 𝑥 )

Domain of discourse: positive integers

Every positive integer is composite or odd.

∀𝑥(¬Prime 𝑥 ∨ ¬Even 𝑥 )

Domain of discourse: positive integers

To negate an expression with a quantifier

1. Switch the quantifier (∀ becomes ∃, ∃ becomes ∀)

2. Negate the expression inside



Negation

Translate these sentences to predicate logic, then negate them.

All cats have nine lives.

All dogs love every person.

There is a cat that loves someone.

∀𝑥 𝐶𝑎𝑡 𝑥 → 𝑁𝑢𝑚𝐿𝑖𝑣𝑒𝑠 𝑥, 9

∃𝑥(𝐶𝑎𝑡 𝑥 ∧ ¬ 𝑁𝑢𝑚𝐿𝑖𝑣𝑒𝑠 𝑥, 9 ) “There is a cat without 9 lives.

∀𝑥∀𝑦 𝐷𝑜𝑔 𝑥 ∧ 𝐻𝑢𝑚𝑎𝑛(𝑦) → 𝐿𝑜𝑣𝑒 𝑥, 𝑦

∃𝑥∃𝑦(𝐷𝑜𝑔 𝑥 ∧ 𝐻𝑢𝑚𝑎𝑛 𝑦 ∧ ¬𝐿𝑜𝑣𝑒 𝑥, 𝑦 ) “There is a dog who does not love 

someone.”   “There is a dog and a person such that the dog doesn’t love that person.”

∃𝑥∃𝑦(𝐶𝑎𝑡 𝑥 ∧ 𝐻𝑢𝑚𝑎𝑛 𝑦 ∧ 𝐿𝑜𝑣𝑒(𝑥, 𝑦)
∀𝑥∀𝑦(𝐶𝑎𝑡 𝑥 ∧ 𝐻𝑢𝑚𝑎𝑛 𝑦 → ¬𝐿𝑜𝑣𝑒 𝑥, 𝑦 )

“For every cat and every human, the cat does not love that human.”

“Every cat does not love any human” (“no cat loves any human”)



Negation with Domain Restriction

∃𝑥∃𝑦(𝐶𝑎𝑡 𝑥 ∧ 𝐻𝑢𝑚𝑎𝑛 𝑦 ∧ 𝐿𝑜𝑣𝑒(𝑥, 𝑦)

∀𝑥∀𝑦([𝐶𝑎𝑡 𝑥 ∧ 𝐻𝑢𝑚𝑎𝑛 𝑦 ] → ¬𝐿𝑜𝑣𝑒 𝑥, 𝑦 )

There are lots of equivalent expressions to the second. This one is by far 
the best because it reflects the domain restriction happening. How did 
we get there?
There’s a problem in this week’s section handout showing similar algebra.



Nested Quantifiers



Everyone is friends with someone. Someone is friends with everyone.

Nested Quantifiers

Translate these sentences using only quantifiers and the predicate AreFriends(𝑥, 𝑦)



Everyone is friends with someone. Someone is friends with everyone.

Nested Quantifiers

Translate these sentences using only quantifiers and the predicate AreFriends(𝑥, 𝑦)

∀𝑥(∃𝑦 AreFriends(𝑥, 𝑦)) ∃𝑥(∀𝑦 AreFriends(𝑥, 𝑦))

∀𝑥∃𝑦 AreFriends(𝑥, 𝑦) ∃𝑥∀𝑦 AreFriends(𝑥, 𝑦)



Nested Quantifiers

∀𝑥∃𝑦 𝑃(𝑥, 𝑦)

“For every 𝑥 there exists a 𝑦 such that 𝑃 𝑥, 𝑦 is true.”

𝑦 might change depending on the 𝑥 (people have different friends!).

∃𝑥∀𝑦 𝑃(𝑥, 𝑦)

“There is an 𝑥 such that for all 𝑦, 𝑃(𝑥, 𝑦) is true.”

There’s a special, magical 𝑥 value so that 𝑃 𝑥, 𝑦 is true regardless of 𝑦.



Nested Quantifiers

Let our domain of discourse be 
{𝐴, 𝐵, 𝐶, 𝐷, 𝐸}

And our proposition 𝑃(𝑥, 𝑦) be 
given by the table.

What should we look for in the table?

∃𝑥∀𝑦𝑃 𝑥, 𝑦

∀𝑥∃𝑦𝑃(𝑥, 𝑦)

𝑃(𝑥, 𝑦) A B C D E

A T T T T T

B T F F T F

C F T F F F

D F F F F T

E F F F T F

𝑦

𝑥



Nested Quantifiers

Let our domain of discourse be 
{𝐴, 𝐵, 𝐶, 𝐷, 𝐸}

And our proposition 𝑃(𝑥, 𝑦) be 
given by the table.

What should we look for in the table?

∃𝑥∀𝑦𝑃 𝑥, 𝑦

A row, where every entry is T

∀𝑥∃𝑦𝑃(𝑥, 𝑦)

In every row there must be a T

𝑃(𝑥, 𝑦) A B C D E

A T T T T T

B T F F T F

C F T F F F

D F F F F T

E F F F T F

𝑦

𝑥



Keep everything in order

Keep the quantifiers in the same order in English as they are in the 
logical notation.

“There is someone out there for everyone” is a ∀𝑥∃𝑦 statement in 
“everyday” English. 

It would never be phrased that way in “mathematical English” We’ll only 
every write “for every person, there is someone out there for them.”



Try it yourselves

Every cat loves some human. There is a cat that loves every human.

Let your domain of discourse be mammals. 
Use the predicates Cat(𝑥), Dog(𝑥), and Loves(𝑥, 𝑦) to mean 𝑥 loves 𝑦.



Try it yourselves

Every cat loves some human. There is a cat that loves every human.

∀𝑥 (Cat 𝑥 → ∃𝑦[Human(𝑦) ∧Loves(𝑥, 𝑦)])

∀𝑥∃𝑦(Cat 𝑥 → [Human(𝑦) ∧ Loves(𝑥, 𝑦)]) ∃𝑥 (Cat 𝑥 ∧ ∀𝑦[Human 𝑦 →Loves(𝑥, 𝑦)])

∃𝑥∀𝑦(Cat 𝑥 ∧ [Human(𝑦) → Loves(𝑥, 𝑦)])



Negation

How do we negate nested quantifiers?

The old rule still applies.

To negate an expression with a quantifier

1. Switch the quantifier (∀ becomes ∃, ∃ becomes ∀)

2. Negate the expression inside

¬(∀𝑥∃𝑦∀𝑧 𝑃 𝑥, 𝑦 ∧ 𝑄 𝑦, 𝑧 )

∃𝑥(¬ ∃𝑦∀𝑧 𝑃 𝑥, 𝑦 ∧ 𝑄 𝑦, 𝑧 )

∃𝑥∀𝑦(¬ ∀𝑧 𝑃 𝑥, 𝑦 ∧ 𝑄 𝑦, 𝑧 )

∃𝑥∀𝑦∃𝑧(¬ 𝑃 𝑥, 𝑦 ∧ 𝑄 𝑦, 𝑧 )

∃𝑥∀𝑦∃𝑧[¬𝑃 𝑥, 𝑦 ∨ ¬𝑄 𝑦, 𝑧 ]



More Translation

For each of the following, translate it, then say whether the statement is 
true. Let your domain of discourse be integers.

For every integer, there is a greater integer.

There is an integer 𝑥, such that for all integers 𝑦, 𝑥𝑦 is equal to 1.

∀𝑦∃𝑥(Equal 𝑥 + 𝑦, 1 )

∀𝑥∃𝑦(Greater(𝑦, 𝑥)) (This statement is true: 𝑦 can be 𝑥 + 1 [𝑦 depends on 𝑥])

∃𝑥∀𝑦(Equal(𝑥𝑦, 1)) (This statement is false: no single value of 𝑥 can play 

that role for every 𝑦.)

For every integer, 𝑦, there is an integer 𝑥 such that 𝑥 + 𝑦 = 1
(This statement is true, 𝑦 can depend on 𝑥)



Theorems and Proofs



Theorems and Proofs

You’ll also see 

“claim” (the statement we’re about to prove)

“lemma” (small theorem, used to prove a bigger theorem)

“corollary” (small theorem, proven using a bigger theorem)

Theorem: A statement that has been proven to 

be true.

Proof: A valid argument that establishes a 

statement to be true.



Theorems and Proofs

Examples of theorems include…

• Given a right triangle with side lengths 𝑎, 𝑏 and hypotenuse 𝑐,
𝑎2 + 𝑏2 = 𝑐2

• There are infinitely many prime numbers.

• There exists a problem that cannot be solved by a program.



Integer

We need a basic starting point to be able to prove things.

Objects to work with.

Some definitions to analyze

An integer: is any real number with no fractional part.

Even(x) := An integer, 𝒙, is even 

if and only if there is an integer 

𝒌 such that 𝒙 = 𝟐𝒌.

Even

Odd(x) := An integer, 𝒙, is odd 

if and only if there is an integer 

𝒌 such that 𝒙 = 𝟐𝒌 + 𝟏.

Odd



A word on definitions

Definitions are fundamental. Our goal is to communicate precisely. 

When you come across an edge case, a definition is the way to solve it.
Is -4 even? Well ∃𝑘(−4 = 2𝑘) (take 𝑘 = −2), so yes it is!

We go to the definition. Not your gut feeling about what feels right.

How do we know something is true? Usually we verify the definition!



A word on definitions

How do we know something is true? Usually we verify the definition!

In other resources (textbooks, Wikipedia, etc.)

You will see things that look like this:

Definition: An integer, x, is even if ∃𝑘(𝑥 = 2𝑘).

Notice it says “if” not “if and only if.”

A definition is always an if and only if. The word “definition” has the 
“only if” direction in it.

I really wish people didn’t do this. I wish they explicitly said “if and only 
if” but some people insist that “definition” implies the “only if” direction. 
Otherwise it’s a “sufficient condition” not a “definition”



Proof Strategy: Direct Proof



Direct Proof

Direct proof is one strategy for proving statements of the form 

∀𝑥[𝑃 𝑥 → 𝑄 𝑥 ]



Our First Direct Proof

Prove: “For all integers 𝑥, if 𝑥 is even, then 𝑥2 is even.”

What’s the claim in logic?

How would we prove this claim?

We’ll see how to prove it formally in a minute; for now, just try to 

convince each other this statement is true.



Our First Direct Proof

Prove: “For all integers 𝑥, if 𝑥 is even, then 𝑥2 is even.”  ∀𝑥 Even 𝑥 → Even 𝑥2

Definitions
Even 𝑥 ≔ ∃𝑘(𝑥 = 2𝑘)



Arbitrary

An “arbitrary” variable is one that 
is part of the domain of discourse (or some sub-domain you pick). 

You know nothing else about.

EVERY element of the domain could be plugged into that arbitrary 
variable. And everything else you say in the proof will follow.

An arbitrary variable is exactly what you need to convince us of a ∀.

If you want to prove a for-all you must explicitly tell us the variable is
arbitrary.
Your reader doesn’t know what you’re doing otherwise.



Our First Direct Proof

Prove: “For all integers 𝑥, if 𝑥 is even, then 𝑥2 is even.”  ∀𝑥 Even 𝑥 → Even 𝑥2

Proof: Let 𝑥 be an arbitrary integer. Suppose that 𝑥 is even.

Definitions
Even 𝑥 ≔ ∃𝑘(𝑥 = 2𝑘)



Now What?

Well….what does it mean to be even?

𝑥 = 2𝑘 for some integer 𝑘.

Where do we need to end up?

Even(𝑥2)

Definitions
Even 𝑥 ≔ ∃𝑘(𝑥 = 2𝑘)



Our First Direct Proof

Prove: “For all integers 𝑥, if 𝑥 is even, then 𝑥2 is even.”  ∀𝑥 Even 𝑥 → Even 𝑥2

Proof: Let 𝑥 be an arbitrary integer. Suppose that 𝑥 is even.

So 𝑥2 is even.

Definitions
Even 𝑥 ≔ ∃𝑘(𝑥 = 2𝑘)



Our First Direct Proof

Prove: “For all integers 𝑥, if 𝑥 is even, then 𝑥2 is even.”  ∀𝑥 Even 𝑥 → Even 𝑥2

Proof: Let 𝑥 be an arbitrary integer. Suppose that 𝑥 is even.

By definition of even, 𝑥 = 2𝑘 for some integer 𝑘.

So 𝑥2 is even.

Definitions
Even 𝑥 ≔ ∃𝑘(𝑥 = 2𝑘)



Our First Direct Proof

Prove: “For all integers 𝑥, if 𝑥 is even, then 𝑥2 is even.”  ∀𝑥 Even 𝑥 → Even 𝑥2

Proof: Let 𝑥 be an arbitrary integer. Suppose that 𝑥 is even.

By definition of even, 𝑥 = 2𝑘 for some integer 𝑘.

Squaring both sides, we see that:

𝑥2 = 2𝑘 2 = 4𝑘2 = 2 ⋅ 2𝑘2

Because 𝑘 is an integer, 2𝑘2 is also an integer.

So 𝑥2 is two times an integer.

Which is exactly the definition of even, so 𝑥2 is even.

Since 𝑥 was an arbitrary integer, we conclude that for all integers 𝑥, if 𝑥 is even then 
𝑥2 is also even.

Definitions
Even 𝑥 ≔ ∃𝑘(𝑥 = 2𝑘)



Direct Proof Template

Let 𝑥 be an arbitrary integer. 

Suppose that 𝑥 is even. 

Then by definition of even, there exists some 

integer 𝑘 such that 𝑥 = 2𝑘. 

Squaring both sides, we see that:

𝑥2 = 2𝑘 2 = 4𝑘2 = 2 ⋅ 2𝑘2

Because 𝑘 is an integer, then 2𝑘2 is also an 

integer.  So 𝑥2 is two times an integer. 

So by definition of even, 𝑥2 is even.

Since 𝑥 was an arbitrary integer, we can conclude 

that for all integers 𝑥, if 𝑥 is even then 𝑥2 is even.

Declare an arbitrary variable for each ∀.

Assume the left side of the implication.

Unroll the predicate definitions.

Manipulate towards the goal.

Reroll definitions into the right side of the 

implication.

Conclude that you have proved the claim.

Prove: ∀𝑥 Even 𝑥 → Even 𝑥2



Direct Proof Steps

These are the usual steps. We’ll see different outlines in the future!!

• Introduction

• Declare an arbitrary variable for each ∀ quantifier

• Assume the left side of the implication

• Core of the proof

• Unroll the predicate definitions

• Manipulate towards the goal (using creativity, algebra, etc.)

• Reroll definitions into the right side of the implication

• Conclude that you have proved the claim


