Direct Proof Steps

These are the usual steps. We'll see different outlines in the future!!

- Introduction
- Declare an arbitrary variable for each \forall quantifier
- Assume the left side of the implication
- Core of the proof
- Unroll the predicate definitions
- Manipulate towards the goal (using creativity, algebra, etc.)
- Reroll definitions into the right side of the implication
- Conclude that you have proved the claim

Another Direct Proof

Prove: "The product of two odd integers is odd."

What's the claim in logic?

How would we prove this claim?

Yet Another Direct Proof

Definitions
Square $(x):=\exists k\left(x=k^{2}\right)$

Prove: "The product of two square integers is square."

$$
\forall n \forall m((\operatorname{Square}(n) \wedge \operatorname{Square}(m)) \rightarrow \text { Square }(n m))
$$

Try it yourselves

Suppose you know $p \rightarrow q, \neg s \rightarrow \neg q$, and p.
Give an argument to conclude s.

Pollev.com/robbie

Help me adjust my explanation!

