Doing a Proof

$\forall x \forall y([r a t i o n a l(x) \wedge r a t i o n a l(y)] \rightarrow$ rational $(x y))$
"The product of two rational numbers is rational."

DON'T just jump right in!
Look at the statement, make sure you know:

1. What every word in the statement means.
2. What the statement as a whole means.
3. Where to start.
4. What your target is.

Rational
A real number x is rational if
(and only if) there exist integers p and q, with $q \neq 0$ such that $x=p / q$.

Try it!

Let $A=\{1,2,3,4,5\}$
$B=\{1,2,5\}$

Is $A \subseteq A$?
Is $B \subseteq A$?
Is $A \subseteq B$?
Is $\{1\} \in A$?
Is $1 \in A$?

Definitions

$A \subseteq B$ (" A is a subset of B ") iff every element of A is also in B.

$A \subseteq B \equiv \forall x(x \in A \rightarrow x \in B)$

$A=B$ (" A equals B ") iff A and B have identical elements.

$$
A=B \equiv \forall x(x \in A \leftrightarrow x \in B) \equiv A \subseteq B \wedge B \subseteq A
$$

What do we do with sets?

We combined propositions with \vee, \wedge, \neg.
We combine sets with \cap [intersection], \cup, [union] -[complement]
$A \cup B=\{x: x \in A \vee x \in B\}$
$A \cap B=\{x: x \in A \wedge x \in B\}$
$\bar{A}=\{x: x \notin A\}$
That's a lot of elements...if we take the complement, we'll have
some "universe" U, and $\bar{A}=\{x: x \in U \wedge x \notin A\}$
It's a lot like the domain of discourse.

