
English Proofs and Sets CSE 311 Autumn 23

Lecture 10



Announcements

Dates/Times/Locations of the midterm and final are confirmed!

Thank you for your patience!

Midterm: Wed. Nov 15, 6-7:30 PM BAG 131,154
Final: Mon. Dec. 11, 4:30-6:20 PM, KNE 130

Some of you will have conflicts!
E.g., due to work schedules, exams for other courses, etc.

More information on alternate exam times as we get closer (we’ll schedule as we 
find out more specifically who needs one).

No need to email me; we’ll send out a form before each exam to let us know what 
you need.



We’ve got A LOT of definitions today

You don’t need me to read things aloud to you.

We’ll cover the subtle/tricky things in lecture.
Other things are left for you to read on your own. The section is marked in the slide 
deck.

Today’s concept check should be very useful to get the definitions 
down! You might find tomorrow’s section more helpful if you’ve done 
today’s concept check already (but deadline is Friday morning like usual)



Returning to English Proofs



Breakdown the statement

“if 𝑥 is even then 𝑥2 is even.”

In symbols, that’s: ∀𝑥 Even 𝑥 → Even 𝑥2

Let’s break down the statement to understand what the proof needs to 
look like:

∀𝑥 comes first. We need to introduce an arbitrary variable

Even 𝑥 → Even(𝑥2) is left. We prove implications by assuming the 
hypothesis and setting the conclusion as our goal

Even(𝑥) is our starting assumption, Even(𝑥2) is our goal



If 𝑥 is even, then 𝑥2 is even.

1. Let 𝑎 be arbitrary

2.1 Even(𝑎)

2.2 ?

2.3 ?

2.4 ?

2.5 ?

2.6 ?

2.7 Even(𝑎2)

3. Even 𝑎 →Even(𝑎2)

4. ∀𝑥(Even 𝑥 →Even(𝑥2))

Assumption

?

?

?

?

?

?

Direct Proof Rule (2.1-2.7)

Intro ∀ (3)



If 𝑥 is even, then 𝑥2 is even.

1. Let 𝑎 be arbitrary

2.1 Even(𝑎)

2.2 ∃𝑦 (2𝑦 = 𝑎)

2.3 2𝑧 = 𝑎

2.4 𝑎2 = 4𝑧2

2.5 𝑎2 = 2 ⋅ 2𝑧2

2.6 ∃𝑤(2𝑤 = 𝑎2)

2.7 Even(𝑎2)

3. Even 𝑎 →Even(𝑎2)

4. ∀𝑥(Even 𝑥 →Even(𝑥2))

Assumption

Definition of Even (2.1)

Elim ∃ 2.2

Algebra (2.3)

Alegbra (2.4)

Intro ∃ (2.5)

Definition of Even

Direct Proof Rule (2.1-2.7)

Intro ∀ (3)



If 𝑥 is even, then 𝑥2 is even.

1. Let 𝑎 be arbitrary

2.1 Even(𝑎)

2.2 ∃𝑦 (2𝑦 = 𝑎)

2.3 2𝑧 = 𝑎

2.4 𝑎2 = 4𝑧2

2.5 𝑎2 = 2 ⋅ 2𝑧2

2.6 ∃𝑤(2𝑤 = 𝑎2)

2.7 Even(𝑎2)

3. Even 𝑎 →Even(𝑎2)

4. ∀𝑥(Even 𝑥 →Even(𝑥2))

Assumption

Definition of Even (2.1)

Elim ∃ 2.2

Algebra (2.3)

Alegbra (2.4)

Intro ∃ (2.5)

Definition of Even

Direct Proof Rule (2.1-2.7)

Intro ∀ (3)

Let 𝑥 be an arbitrary even integer. 

By definition, there is an integer 𝑦 such 

that 2𝑦 = 𝑥.

Squaring both sides, we see that 𝑥2 =
4𝑦2 = 2 ⋅ 2𝑦2.

Because 𝑦 is an integer, 2𝑦2 is also an 

integer, and 𝑥2 is two times an integer.

Thus 𝑥2 is even by the definition of 

even.

Since 𝑥 was an arbitrary even integer, 

we can conclude that for every even 𝑥, 

𝑥2 is also even. 



Converting to English

Start by introducing your assumptions.

Introduce variables with “let.” Introduce 
assumptions with “suppose.” 

Always state what type your variable is. English 
proofs don’t have an established domain of 
discourse.

Don’t just use “algebra” explain what’s going on if 
you can explain better.

We don’t explicitly intro/elim ∃/∀ so we end up 
with fewer “dummy variables” 

Let 𝑥 be an arbitrary even integer. 

By definition, there is an integer 𝑦 such 

that 2𝑦 = 𝑥.

Squaring both sides, we see that 𝑥2 =
4𝑦2 = 2 ⋅ 2𝑦2.

Because 𝑦 is an integer, 2𝑦2 is also an 

integer, and 𝑥2 is two times an integer.

Thus 𝑥2 is even by the definition of 

even.

Since 𝑥 was an arbitrary even integer, 

we can conclude that for every even 𝑥,
𝑥2 is also even. 



Let’s do another!

First a definition

A real number 𝑥 is rational if (and only if) there exist 

integers 𝒑 and 𝒒, with 𝒒 ≠ 𝟎 such that 𝒙 = 𝒑/𝒒.

Rational

Rational(𝑥)≔ ∃𝑝∃𝑞( Integer 𝑝 ∧Integer 𝑞 ∧ (𝑥 = Τ𝑝 𝑞) ∧ 𝑞 ≠ 0)



Let’s do another!

“The product of two rational numbers is rational.”

What is this statement in predicate logic?

∀𝑥∀𝑦([rational 𝑥 ∧rational(𝑦)] →rational(𝑥𝑦))

Remember unquantified variables in English are implicitly 

universally quantified.



Doing a Proof

∀𝑥∀𝑦([rational 𝑥 ∧rational(𝑦)] →rational(𝑥𝑦))

“The product of two rational numbers is rational.”

DON’T just jump right in! 

Look at the statement, make sure you know:

1. What every word in the statement means.

2. What the statement as a whole means.

3. Where to start.

4. What your target is. A real number 𝑥 is rational if 

(and only if) there exist integers 𝒑
and 𝒒, with 𝒒 ≠ 𝟎 such that 𝒙 = 𝒑/𝒒.

Rational



Let’s do another!

“The product of two rational numbers is rational.”

Let 𝑥, 𝑦 be arbitrary rational numbers.

Therefore, 𝑥𝑦 is rational.

Since 𝑥 and 𝑦 were arbitrary, we can conclude the product of two 
rational numbers is rational.



Let’s do another!

“The product of two rational numbers is rational.”

Let 𝑥, 𝑦 be arbitrary rational numbers.

By the definition of rational, 𝑥 = 𝑎/𝑏, 𝑦 = 𝑐/𝑑 for integers 𝑎, 𝑏, 𝑐, 𝑑
where 𝑏 ≠ 0 and 𝑑 ≠ 0.

Multiplying, 𝑥𝑦 =
𝑎

𝑏
⋅
𝑐

𝑑
=

𝑎𝑐

𝑏𝑑
. 

Since integers are closed under multiplication, 𝑎𝑐 and 𝑏𝑑 are integers.

Moreover, 𝑏𝑑 ≠ 0 because neither 𝑏 nor 𝑑 is 0. Thus 𝑥𝑦 is rational.

Since 𝑥 and 𝑦 were arbitrary, we can conclude the product of two 
rational numbers is rational.



What about an inference proof?
(Skipping a bunch of elim ∧ type steps)

1. Let 𝑥 be arbitrary ---

2. Let 𝑦 be arbitrary ---

3.1 Rational(𝑥) ∧ Rational(𝑦)  Assumption

3.? ∃𝑝, 𝑞(Integer(𝑝)∧Integer(𝑞)∧ 𝑞 ≠ 0 ∧ 𝑥 = 𝑝/𝑞) Defn of Rational

3.? 𝑥 = 𝑎/𝑏 Elim exists (𝑎, 𝑏 fresh)

3.? 𝑦 = 𝑐/𝑑 Elim exists (𝑐, 𝑑 fresh)

3.? 𝑥𝑦 = 𝑎𝑐/𝑏𝑑 Algebra

3.? 𝑏𝑑 ≠ 0 Algebra (we’d probably need a new rule here, combining not-equals)

3.? Integer(𝑎𝑐)   (we’d probably need a new rule here)

We don’t want to have to write down a formal rule 

every time we explain something new. Like “an integer 

times an integer is an integer” but a computer would 

need us to.



What about an inference proof?
(Skipping a bunch of elim ∧ type steps)

3.? Integer(𝑎𝑐) ∧ Integer(𝑏𝑑) ∧ 𝑏𝑑 ≠ 0 ∧ 𝑥𝑦 = 𝑎𝑐/𝑏𝑑

3.? ∃𝑟, 𝑠(Integer(𝑟) ∧ Integer(𝑠) ∧ 𝑥𝑦 = 𝑟/𝑠) Intro exists

3.? Rational(𝑥𝑦)  Definition of Rational

4. [Rational(𝑥) ∧ Rational(𝑦)] → Rational(𝑥𝑦)

5. ∀𝑣([Rational(𝑥) ∧ Rational(𝑣)] → Rational(𝑥v)) Intro ∀

6. ∀𝑢∀𝑣([Rational(𝑢) ∧ Rational(v)] → Rational(𝑢𝑣)) Intro ∀



Why English Proofs?

Those symbolic proofs seemed pretty nice. Computers understand 
them, and can check them.

So what’s up with these English proofs?

They’re far easier for people to understand. 

But instead of a computer checking them, now a human is checking 
them.



Sets



Sets 

A set is an unordered group of distinct elements.

We’ll always write a set as a list of its elements inside {curly, brackets}.

Variable names are capital letters, with lower-case letters for elements.

𝐴 = {curly, brackets}

𝐵 = 0,5,8,10 = 5,0,8,10 = {0,0,5,8,10}

𝐶 = 0,1,2,3,4, …

𝐴 = 2. “The size of 𝐴 is 2.” or “𝐴 has cardinality 2.”



Sets

Some more symbols:

𝑎 ∈ 𝐴 (“𝑎 is in 𝐴" or “𝑎 is an element of 𝐴") means 𝑎 is one of the 
members of the set.

For 𝐵 = 0,5,8,10 , 0 ∈ 𝐵.

𝐴 ⊆ 𝐵 (𝐴 is a subset of 𝐵) means every element of 𝐴 is also in 𝐵.

For 𝐴 = 1,2 , 𝐵 = {1,2,3} 𝐴 ⊆ 𝐵



Sets

Be careful about these two operations:

If 𝐴 = {1,2,3,4,5}

1 ⊆ 𝐴, but 1 ∉ 𝐴

∈ asks: is this item in that box?

⊆ asks: is everything in this box also in that box?



Try it!

Let 𝐴 = 1,2,3,4,5

𝐵 = {1,2,5}

Is 𝐴 ⊆ 𝐴?

Is 𝐵 ⊆ 𝐴?

Is 𝐴 ⊆ 𝐵?

Is 1 ∈ 𝐴?

Is 1 ∈ 𝐴?



Try it!

Let 𝐴 = 1,2,3,4,5

𝐵 = {1,2,5}

Is 𝐴 ⊆ 𝐴?

Is 𝐵 ⊆ 𝐴?

Is 𝐴 ⊆ 𝐵?

Is 1 ∈ 𝐴?

Is 1 ∈ 𝐴?

Yes!

Yes

No 

No

Yes



Definitions

𝐴 ⊆ 𝐵 ("𝐴 is a subset of 𝐵") iff every element of 𝐴 is also in 𝐵.

𝐴 = 𝐵 ("𝐴 equals 𝐵") iff 𝐴 and 𝐵 have identical elements.

𝐴 ⊆ 𝐵 ≡ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)

𝐴 = 𝐵 ≡ ∀𝑥 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ≡ 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴



Proof Skeleton

How would we show 𝐴 ⊆ 𝐵?

Let 𝑥 be an arbitrary element of 𝐴

…

So 𝑥 is also in 𝐵.

Since 𝑥 was an arbitrary element of 𝐴, we have that 𝐴 ⊆ 𝐵.

𝐴 ⊆ 𝐵 ≡ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)



Proof Skeleton

That wasn’t a “new” skeleton! It’s exactly what we did last week when we 
wanted to prove ∀𝑥(𝑃 𝑥 → 𝑄 𝑥 ) !

What about 𝐴 = 𝐵?

Just do two subset proofs! 

i.e. ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) and ∀𝑥(𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐴)

𝐴 = 𝐵 ≡ ∀𝑥 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ≡ 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴



What do we do with sets?

We combined propositions with ∨,∧, ¬.

We combine sets with ∩ intersection ,∪, [union] ¯[complement]

𝐴 ∪ 𝐵 = {𝑥: 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵}

𝐴 ∩ 𝐵 = {𝑥: 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵}

ҧ𝐴 = {𝑥: 𝑥 ∉ 𝐴} That’s a lot of elements…if we take the complement, we’ll have 

some “universe” 𝒰, and ҧ𝐴 = {𝑥: 𝑥 ∈ 𝑈 ∧ 𝑥 ∉ 𝐴}
It’s a lot like the domain of discourse.



Proofs with sets



A proof!

What’s the analogue of DeMorgan’s Laws…

ҧ𝐴 ∩ ത𝐵 = 𝐴 ∪ 𝐵 𝐴 = 𝐵 ≡ ∀𝑥 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ≡ 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴

ҧ𝐴 ∩ ത𝐵 ⊆ 𝐴 ∪ 𝐵

𝐴 ∪ 𝐵 ⊆ ҧ𝐴 ∩ ത𝐵



A proof!

What’s the analogue of DeMorgan’s Laws…

ҧ𝐴 ∩ ത𝐵 = 𝐴 ∪ 𝐵 𝐴 = 𝐵 ≡ ∀𝑥 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ≡ 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴

ҧ𝐴 ∩ ത𝐵 ⊆ 𝐴 ∪ 𝐵
Let 𝑥 be an arbitrary element of ҧ𝐴 ∩ ത𝐵. 

…

That is, 𝑥 is in the complement of 𝐴 ∪ 𝐵, as required.

Since 𝑥 was arbitrary ҧ𝐴 ∩ ത𝐵 ⊆ 𝐴 ∪ 𝐵

𝐴 ∪ 𝐵 ⊆ ҧ𝐴 ∩ ത𝐵
Let 𝑥 be an arbitrary element of 𝐴 ∪ 𝐵.

…

we get 𝑥 ∈ ҧ𝐴 ∩ ത𝐵
Since 𝑥 was arbitrary 𝐴 ∪ 𝐵 ⊆ ҧ𝐴 ∩ ത𝐵

Since the subset relation holds in both directions, we have ҧ𝐴 ∩ ത𝐵 = 𝐴 ∪ 𝐵



A proof!

What’s the analogue of DeMorgan’s Laws…

ҧ𝐴 ∩ ത𝐵 = 𝐴 ∪ 𝐵 𝐴 = 𝐵 ≡ ∀𝑥 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ≡ 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴

ҧ𝐴 ∩ ത𝐵 ⊆ 𝐴 ∪ 𝐵
Let 𝑥 be an arbitrary element of ҧ𝐴 ∩ ത𝐵. 

By definition of ∩ 𝑥 ∈ ҧ𝐴 and 𝑥 ∈ ത𝐵. By definition of complement, 𝑥 ∉ 𝐴 ∧ 𝑥 ∉ 𝐵.

Applying DeMorgan’s Law, we get that it is not the case that 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵.

That is, 𝑥 is in the complement of 𝐴 ∪ 𝐵, as required.

Since 𝑥 was arbitrary ҧ𝐴 ∩ ത𝐵 ⊆ 𝐴 ∪ 𝐵

𝐴 ∪ 𝐵 ⊆ ҧ𝐴 ∩ ത𝐵
Let 𝑥 be an arbitrary element of 𝐴 ∪ 𝐵.

By definition of complement, 𝑥 is not an element of 𝐴 ∪ 𝐵. Applying the definition of union, we get, ¬(𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵)
Applying DeMorgan’s Law, we get: 𝑥 ∉ 𝐴 ∧ 𝑥 ∉ 𝐵
By definition of ∩ and complement, we get 𝑥 ∈ ҧ𝐴 ∩ ത𝐵
Since 𝑥 was arbitrary 𝐴 ∪ 𝐵 ⊆ ҧ𝐴 ∩ ത𝐵

Since the subset relation holds in both directions, we have ҧ𝐴 ∩ ത𝐵 = 𝐴 ∪ 𝐵



Proof-writing advice

When you’re writing a set equality proof, often the two directions are 
nearly identical, just reversed.

It’s very tempting to use that 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 definition.

Be VERY VERY careful. It’s easy to mess that up, at every step you need 
to be saying “if and only if.”



Summary: How to show an if and only if

To show 𝑝 ↔ 𝑞 you have two options:

Option A (STRONGLY recommended)

(1) 𝑝 → 𝑞

(2) 𝑞 → 𝑝

Option B (discouraged)

𝑝 if-and-only-if 𝑝′ if-and-only-if 𝑝′′ if-and-only-if … if-and-only-if 𝑞

EVERY step must be an if-and-only if (in your justification AND explicitly 
written).



Two More Set Operations

Set-Builder Notation

Build your own set!

{𝑥 ∶ Conditions 𝑥 }

“The set of all 𝑥 such that Conditions(𝑥)”

Everything that meets the conditions (causes the expression after the :
to be true) is in the set. Nothing else is.

{𝑥:Even(𝑥)} = {… ,−4,−2,0,2,4, … }

{𝑦:Prime(𝑦)∧ Even(𝑦)} = {2}

In general

{ 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 ∶ 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 }
Will also see | instead of :



Two More Set Operations

Given a set, let’s talk about it’s powerset. 

𝒫 𝐴 = {X: X is a subset of 𝐴}

The powerset of 𝐴 is the set of all subsets of 𝐴.

𝒫 1,2 = {∅, 1 , 2 , 1,2 }



More Proof Techniques



Proving an exists statement

How do I convince you ∃𝑥(𝑃 𝑥 )?

Show me the 𝑥! And convince me that 𝑃(𝑥) is true for that 𝑥.

Domain: Integers

Claim ∃𝑥 Even(𝑥)

Proof: Consider 𝑥 = 2. We see that 2 = 2 ⋅ 1. Since 1 is an integer 2 =
2𝑘 for an integer 𝑘, which means 2 is even by definition, as required. 



Two claims, two proof techniques

Suppose I claim that for all sets 𝐴, 𝐵, 𝐶: 𝐴 ∩ 𝐵 ⊆ 𝐶

That…doesn’t look right. 

How do you prove me wrong? 

What am I trying to prove? First write symbols for “¬(for all sets 
𝐴, 𝐵, 𝐶 …)” 

Then ‘distribute’ the negation sign.



Two claims, two proof techniques

Suppose I claim that for all sets 𝐴, 𝐵, 𝐶: 𝐴 ∩ 𝐵 ⊆ 𝐶

That…doesn’t look right. 

How do you prove me wrong? 

Want to show: ∃𝐴, 𝐵, 𝐶: 𝐴 ∩ 𝐵 ⊆ 𝐶

Consider 𝐴 = {1,2,3}, 𝐵 = {1,2}, 𝐶 = {2,3}, then 𝐴 ∩ 𝐵 = 1,2 , which is 
not a subset of 𝐶.



Proof By [Counter]Example

To prove an existential statement (or disprove a universal statement), 
provide an example, and demonstrate that it is the needed example.

You don’t have to explain where it came from! (In fact, you shouldn’t)

Computer scientists and mathematicians like to keep an air of mystery 
around our proofs.
(or more charitably, we want to focus on just enough to believe the claim) 



Skeleton of an Exists Proof

To show ∃𝑥(𝑃 𝑥 )

Consider 𝑥 =[the value that will work]

[Show that 𝑥 does cause 𝑃(𝑥) to be true.]

So [value] is the desired 𝑥.

You’ll probably need some “scratch work” to determine what to set 𝑥 to. 
That might not end up in the final proof!



Proof By Cases

Let 𝐴 = {𝑥 ∶ Prime(𝑥)}, 𝐵 = {𝑥: Odd 𝑥 ∨ PowerOfTwo(𝑥)}

Where PowerOfTwo 𝑥 ≔ ∃𝑐(Integer 𝑐 ∧ 𝑥 = 2^𝑐)

Prove 𝐴 ⊆ 𝐵

We need two different arguments – one for 2 and one for all the other 
primes…



Proof By Cases

Let 𝑥 be an arbitrary element of 𝐴.

We divide into two cases.

Case 1: 𝑥 is even
If 𝑥 is even and an element of 𝐴 (i.e. both even and prime) it must be 2.

So it equals 2^𝑐 for 𝑐 = 1, and thus is in 𝐵 by definition of 𝐵.

Case 2: 𝑥 is odd

Then 𝑥 ∈ 𝐵 by satisfying the first requirement in the definition of 𝐵.

In either case, 𝑥 ∈ 𝐵. Since an arbitrary element of 𝐴 is also in 𝐵, we 
have 𝐴 ⊆ 𝐵. 



Proof By Cases

Make it clear how you decide which case your in.

It should be obvious your cases are “exhaustive”

Reach the same conclusion in each of the cases, and you can say you’ve 
got that conclusion no matter what (outside the cases).

Advanced version: sometimes you end up arguing a certain case “can’t 
happen”



Read on Your Own



Some old friends (and some new ones)

ℕ is the set of Natural Numbers; ℕ = {0, 1, 2, …}

ℤ is the set of Integers; ℤ = {…, -2, -1, 0, 1, 2, …}

ℚ is the set of Rational Numbers; e.g. ½, -17, 32/48

ℝ is the set of Real Numbers; e.g. 1, -17, 32/48, π, 2
[n] is the set {1, 2, …, n} when n is a positive integer

{} =  is the empty set; the only set with no elements



Some old friends (and some new ones)

ℕ is the set of Natural Numbers; ℕ = {0, 1, 2, …}

ℤ is the set of Integers; ℤ = {…, -2, -1, 0, 1, 2, …}

ℚ is the set of Rational Numbers; e.g. ½, -17, 32/48

ℝ is the set of Real Numbers; e.g. 1, -17, 32/48, π, 2
[n] is the set {1, 2, …, n} when n is a positive integer

{} =  is the empty set; the only set with no elements

Our natural numbers start at 0. 

Common in CS, other resources start at 1.

In LaTeX \mathbb{R}

In Office \doubleR

Use this symbol not {}.

In LaTex \varnothing In Office \emptyset.



More Connectors!

𝐴 ∖ 𝐵 “A minus B”

𝐴⊕ 𝐵 “XOR” (also called “symmetric difference”)

𝐴 ∖ 𝐵 = {𝑥: 𝑥 ∈ 𝐴 ∧ 𝑥 ∉ 𝐵}

𝐴⊕ 𝐵 = {𝑥: 𝑥 ∈ 𝐴⊕ 𝑥 ∈ 𝐵}



More Connectors!

𝐴 × 𝐵 = 𝑎, 𝑏 : 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵

Called “the Cartesian product” of 𝐴 and 𝐵. 

ℝ ×ℝ is the “real plane” ordered pairs of real numbers. 

1,2 × 1,2,3 = { 1,1 , 1,2 , 1,3 , 2,1 , 2,2 , 2,3 }


