A proof!

What's the analogue of DeMorgan's Laws...
$\bar{A} \cap \bar{B}=\overline{A \cup B}$ $A=B \equiv \forall x(x \in A \leftrightarrow x \in B) \equiv A \subseteq B \wedge B \subseteq A$
$\bar{A} \cap \bar{B} \subseteq \overline{A \cup B}$
Let x be an arbitrary element of $\bar{A} \cap \bar{B}$.
By definition of $\cap x \in \bar{A}$ and $x \in \bar{B}$. By definition of complement, $x \notin A \wedge x \notin B$.
Applying DeMorgan's Law, we get $\neg(x \in A \vee x \in B)$.
That is, x is in the complement of the set that contains all x such that $x \in A \vee x \in B$.
So, by definition of union $\mathrm{x} \in \overline{A \cup B}$, as required.
Since x was arbitrary $\bar{A} \cap \bar{B} \subseteq \overline{A \cup B}$
$\overline{A \cup B} \subseteq \bar{A} \cap \bar{B}$
Let x be an arbitrary element of $\overline{A \cup B}$.
By definition of complement, x is not an element of $A \cup B$. Applying the definition of union, we get, $\neg(x \in A \vee x \in B)$
Applying DeMorgan's Law, we get: $x \notin A \wedge x \notin B$
By definition of complement, $x \in \bar{A} \wedge x \in \bar{B}$. So by definition of intersection, we get $x \in \bar{A} \cap \bar{B}$
Since x was arbitrary $\overline{A \cup B} \subseteq \bar{A} \cap \bar{B}$
Since the subset relation holds in both directions, we have $\bar{A} \cap \bar{B}=\overline{A \cup B}$

Two claims, two proof techniques

Suppose I claim that for all sets $A, B, C: A \cap B \subseteq C$
That...doesn't look right.
How do you prove me wrong?

What am I trying to prove? First write symbols for " \neg (for all sets $A, B, C \ldots$...)
Then 'distribute' the negation sign.

Proof By Cases

Let $A=\{x: \operatorname{Prime}(x)\}, B=\{x: \operatorname{Odd}(x) \vee \operatorname{PowerOfTwO}(x)\}$
Where PowerOfTwo $(x):=\exists c\left(\right.$ Integer $\left.(c) \wedge x=2^{\wedge} c\right)$
Prove $A \subseteq B$

Divides

Divides

> For integers x, y we say $x \mid y$ (" x divides y ") iff there is an integer z such that $x z=y$.

Which of these are true?
$2 \mid 4$
$4 \mid 2$
$2 \mid-2$
$5 \mid 0$
$0 \mid 5$
1|5

