Divides

Divides

For integers x, y we say $x \mid y$ (" x divides y ") iff there is an integer z such that $x z=y$.

Which of these are true?
$2 \mid 4$
$4 \mid 2$
$2 \mid-2$
$5 \mid 0$
$0 \mid 5$
1|5

A useful theorem

The Division Theorem

For every $a \in \mathbb{Z}, d \in \mathbb{Z}$ with $d>0$
There exist unique integers q, r with $0 \leq r<d$ Such that $a=d q+r$

Remember when non integers were still secret, you did division like this?

q is the "quotient"
r is the "remainder"

Claim: for all $a, b, c, n \in \mathbb{Z}, n>0: a \equiv b(\bmod n) \rightarrow a+c \equiv b+c(\bmod n)$

Before we start, we must know:

1. What every word in the statement means.
2. What the statement as a whole means.
3. Where to start.
4. What your target is.

Divides

For integers x, y we say $x \mid y$ (" x divides y ") iff there is an integer z such that $x z=y$.

Equivalence in modular arithmetic

Let $a \in \mathbb{Z}, b \in \mathbb{Z}, n \in \mathbb{Z}$ and $n>0$. We say $a \equiv b(\bmod n)$ if and only if $n \mid(b-a)$

Another Proof

For all integers, a, b, c : Show that if $a \nmid(b c)$ then $a \nmid b$ or $a \nmid c$.
Proof:
Let a, b, c be arbitrary integers, and suppose $a \nmid(b c)$.
Then there is not an integer z such that $a z=b c$

So $a \nmid b$ or $a \nmid c$

