| Divides                                                                                            |     |      |  |  |
|----------------------------------------------------------------------------------------------------|-----|------|--|--|
| Divides                                                                                            |     |      |  |  |
| For integers $x, y$ we say $x y$ ("x divides y") iff<br>there is an integer z such that $xz = y$ . |     |      |  |  |
| Which of these are true?                                                                           |     |      |  |  |
| 2 4                                                                                                | 4 2 | 2 -2 |  |  |
| 5 0                                                                                                | 0 5 | 1 5  |  |  |
|                                                                                                    |     |      |  |  |



| Claim: for all $a, b, c, n \in \mathbb{Z}$                        | $a, n > 0: a \equiv b \pmod{n} \rightarrow a + c \equiv b + c \pmod{n}$                                                                     |  |  |
|-------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Before we start, we must know:                                    |                                                                                                                                             |  |  |
| 1. What every word in the statement means.                        |                                                                                                                                             |  |  |
| 2. What the statement as a whole means.                           |                                                                                                                                             |  |  |
| <ol> <li>Where to start.</li> <li>What your target is.</li> </ol> | Divides                                                                                                                                     |  |  |
|                                                                   | For integers $x, y$ we say $x y$ (" $x$ divides $y$ ") iff<br>there is an integer $z$ such that $xz = y$ .                                  |  |  |
| Pollev.com/robbie                                                 | Equivalence in modular arithmetic                                                                                                           |  |  |
|                                                                   | Let $a \in \mathbb{Z}$ , $b \in \mathbb{Z}$ , $n \in \mathbb{Z}$ and $n > 0$ .<br>We say $a \equiv b \pmod{n}$ if and only if $n   (b - a)$ |  |  |

## Another Proof

```
For all integers, a, b, c: Show that if a \ (bc) then a \ b or a \ c.
Proof:
Let a, b, c be arbitrary integers, and suppose a \ (bc).
Then there is not an integer z such that az = bc
...
So a \ b or a \ c
```