Trying a direct proof

$\forall a\left(\operatorname{Even}\left(a^{2}\right) \rightarrow \operatorname{Even}(a)\right)$ "if a^{2} is even, then a is even."

Proof By Contradiction

Claim: $\sqrt{2}$ is irrational (i.e. not rational).
Proof:
Suppose for the sake of contradiction that $\sqrt{2}$ is rational.
By definition of rational, there are integers s, t such that $\mathrm{t} \neq 0$ and $\sqrt{2}=s / t$. Without loss of generality, let s / t be in lowest terms (i.e., with no common factors greater than 1).
$\sqrt{2}=\frac{s}{t}$
$2=\frac{s^{2}}{t^{2}}$
$2 t^{2}=s^{2}$ so s^{2} is even. By the fact above, s is even, i.e. $s=2 k$ for some integer k. Squaring both
sides $s^{2}=4 k^{2}$
Substituting into our original equation, we have: $2 t^{2}=4 k^{2}$, i.e. $t^{2}=2 k^{2}$.
So t^{2} is even (by definition of even). Applying the fact above again, t is even.
But if both s and t are even, they have a common factor of 2 . But we said the fraction was in lowest terms.
That's a contradiction! We conclude $\sqrt{2}$ is irrational.

What's the difference?

What's the difference between proof by contrapositive and proof by contradiction?

Show $p \rightarrow q$	Proof by contradiction	Proof by contrapositive
Starting Point	$\neg(p \rightarrow q) \equiv(p \wedge \neg q)$	$\neg q$
Target	Something false	$\neg p$
Show p	Proof by contradiction	Proof by contrapositive
Starting Point	$\neg p$	---
Target	Something false	---

Another Proof By Contradiction

Claim: There are infinitely many primes.
Proof:
Suppose for the sake of contradiction, that there are only finitely many primes. Call them $p_{1}, p_{2}, \ldots, p_{k}$.
Consider the number $q=p_{1} \cdot p_{2} \cdot \cdots \cdot p_{k}+1$
Case 1: q is prime

Case 2: q is composite

But [] is a contradiction! So there must be infinitely many primes.

