Warm-up: Show "if a^2 is even, then a is even."

HW3 Solutions available taday

Proof by Contradiction CSE 311 Autumn 2023 Lecture 13

Trying a direct proof

 $\forall a (\text{Even}(a^2) \rightarrow \text{Even}(a)) \text{ "if } a^2 \text{ is even, then } a \text{ is even."}$

Trying a direct proof

 $\forall a(\text{Even}(a^2) \rightarrow \text{Even}(a))$

Let a be an arbitrary integer and suppose that a^2 is even. By definition of even, $a^2 = 2k$ for some integer k.

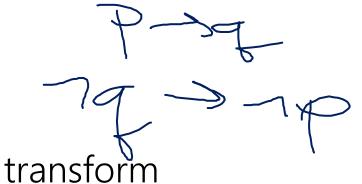
Taking the positive square-root of each side, we get $a = \sqrt{2k}$

Therefore a is even.

. . . .

Taking a square root of a variable is tricky! It's hard to do algebra on.

What should we do?



We're trying to show an implication. How can we transform implications? Could that make it easier?

Maybe a transformation that would "switch the order" so that instead of taking a square root, we're squaring...

Take a contrapositive!

Proving by contrapositive

 $\forall a(\texttt{Even}(a^2) \rightarrow \texttt{Even}(a)) \equiv \forall a(\neg \texttt{Even}(a) \rightarrow \neg \texttt{Even}(a^2)) \equiv \forall a(\texttt{Odd}(a) \rightarrow \texttt{Odd}(a^2))$

We argue by contrapositive.

Let a be an arbitrary integer and suppose a is odd.

By definition of odd, a = 2k + 1 for some integer k.

Squaring both sides, we get $a^2 = (2k + 1)^2 = 4k^2 + 4k + 1$

Rearranging, we get $a^2 = 2(2k^2 + 2k) + 1$. Since k is an integer, $2k^2 + 2k$ is an integer, we thus get that a^2 meets the definition of odd (being 2 times an integer plus one), as required.

Since a was arbitrary, we have that for every odd a, that a^2 is also odd, which is the contrapositive of our original claim.

Proof by contrapositive in general

You might write down the contrapositive for yourself, but it doesn't go in the proof.

Tell your reader you're arguing by contrapositive right at the start! (Otherwise it'll look like you're proving the wrong thing!)

The quantifier(s) don't change! Just the implication inside.

Another Proof

For all integers, a, b, c: Show that if $a \nmid (bc)$ then $a \nmid b$ or $a \nmid c$. Proof:

Let a, b, c be arbitrary integers, and suppose $a \nmid (bc)$.

Then there is not an integer z such that az = bc

So $a \nmid b$ or $a \nmid c$

. . .

Another Proof

For all integers, a, b, c: Show that if $a \not (bc)$ then $a \nmid b$ or $a \nmid c$. Proof:

Let *a*, *b*, *c* be arbitrar

Then there is not an

There has to be a better way!

Another Proof

For all integers, a, b, c: Show that if $a \nmid (bc)$ then $a \nmid b$ or $a \nmid c$.

There has to be a better way!

If only there were some equivalent implication...

One where we could negate everything...

Take the contrapositive of the statement:

For all integers, *a*, *b*, *c*: Show if *a*|*b* and *a*|*c* then *a*|(*bc*).

By contrapositive

Claim: For all integers, a, b, c: Show that if $a \nmid (bc)$ then $a \nmid b$ or $a \nmid c$. We argue by contrapositive.

Let a, b, c be arbitrary integers, and suppose a|b and a|c.

Therefore a|bc

By contrapositive

Claim: For all integers, a, b, c: Show that if $a \nmid (bc)$ then $a \nmid b$ or $a \nmid c$. We argue by contrapositive.

Let a, b, c be arbitrary integers, and suppose a|b and a|c.

By definition of divides, ax = b and ay = c for integers x and y.

Multiplying the two equations, we get axay = bc

Since a, x, y are all integers, xay is an integer. Applying the definition of divides, we have a|bc.

Signs you might want to use proof by contrapositive

1. The hypothesis of the implication you're proving has a "not" in it (that you think is making things difficult)

2. The target of the implication you're proving has an "or" or "not" in it.

3. There's a step that is difficult forward, but easy backwards e.g., taking a square-root forward, squaring backwards.

4. You get halfway through the proof and you can't "get ahold of" what) you're trying to show.

e.g., you're working with a "not equal" instead of an "equals" or "every thing doesn't have this property" instead of "some thing does have that property"

All of these are reasons you might want contrapositive. Sometimes you just have to try and see what happens!

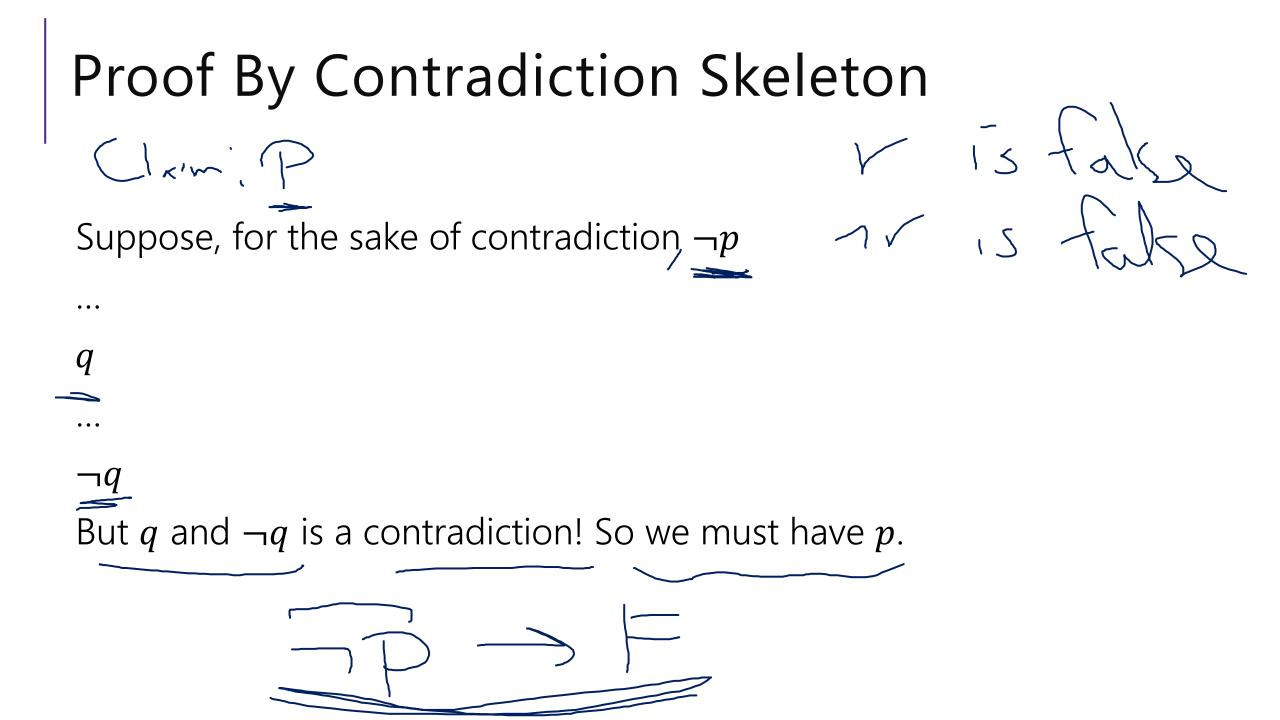
Suppose the negation of your claim.

Show that you can derive False (i.e. (\neg claim) \rightarrow F)

A correct proof shows that the implication is true. $\overset{\bigcirc}{\longrightarrow}$

So -claim must be False.

So claim must be True!



Claim: $\sqrt{2}$ is irrational (i.e. not rational). Proof:

Claim: $\sqrt{2}$ is irrational (i.e. not rational). Proof:

Suppose for the sake of contradiction that $\sqrt{2}$ is rational.

But [] is a contradiction!

If a^2 is even then a is even.

Claim: $\sqrt{2}$ is irrational (i.e. not rational). Proof:

Suppose for the sake of contradiction that $\sqrt{2}$ is rational.

By definition of rational, there are integers s, t such that $t \neq 0$ and $\sqrt{2} = s/t$. Without loss of generality, let s/t be in lowest terms (i.e., with no common factors greater than 1).

> Fancy mathematician speak for "I'm choosing more specific values, but it's ok for me to do that."

That's a contradiction! We conclude $\sqrt{2}$ is irrational.

When can I say without loss of generality?

The claim you're trying to prove is fully general still. What you're doing looks like a new assumption but isn't.

Here: we'd just divide p, q by their common factors (i.e., put the fraction in lowest-terms) and continue the proof.

Other common example:

Let x, y be integers; without loss of generality, assume $x \ge y$ (one of them must be bigger, just give the bigger one the name x).

Only use if your reader will immediately agree that you can still prove the claim! If you're worried, tell the reader how to get those values (here, define p,q as the reduced fraction, and continue with p,q as variables).

If a^2 is even then a is even.

Claim: $\sqrt{2}$ is irrational (i.e. not rational).

Proof:

Suppose for the sake of contradiction that $\sqrt{2}$ is rational.

By definition of rational, there are integers s, t such that $t \neq 0$ and $\sqrt{2} = s/t$. Without loss of generality, let s/t be in lowest terms (i.e., with no common factors greater than 1).

 $\frac{\sqrt{2} = \frac{1}{t}}{2t^2 = s^2}$ $\frac{1}{2t^2 = s^2} \text{ so } s^2 \text{ is even.} \qquad 5 \text{ ls } war \qquad 5 \text{ -2} \text{ ls } 1 \text{$

That's a contradiction! We conclude $\sqrt{2}$ is irrational.

Claim: $\sqrt{2}$ is irrational (i.e. not rational).

Proof:

Suppose for the sake of contradiction that $\sqrt{2}$ is rational.

By definition of rational, there are integers s, t such that $t \neq 0$ and $\sqrt{2} = s/t$. Without loss of generality, let s/t be in lowest terms (i.e., with no common factors greater than 1).

$$\sqrt{2} = \frac{s}{t}$$

$$2 = \frac{s^2}{t^2}$$

 $2t^2 = s^2$ so s^2 is even. By the fact above, s is even, i.e. s = 2k for some integer k. Squaring both sides $s^2 = 4k^2$

Substituting into our original equation, we have: $2t^2 = 4k^2$, i.e. $t^2 = 2k^2$.

So t^2 is even (by definition of even). Applying the fact above again, t is even.

But if both *s* and *t* are even, they have a common factor of 2. But we said the fraction was in lowest terms.

That's a contradiction! We conclude $\sqrt{2}$ is irrational?

If a^2 is even then a is even.

How in the world did we know how to do that?

In real life...lots of attempts that didn't work.

Be very careful with proof by contradiction – without a clear target, you can easily end up in a loop of trying random things and getting nowhere.

What's the difference?

What's the difference between proof by contrapositive and proof by contradiction?

Show $p o q$	Proof by contradiction (Proof by contrapositive
Starting Point	$\neg(p \to q) \equiv (\underline{p \land \neg q})$	$\neg q \leqslant$
Target	Something false	$\neg p$ r
Show p	Proof by contradiction	Proof by contrapositive
Starting Point	p	
Target	Something false	

Claim: There are infinitely many primes.

Proof:

Claim: There are infinitely many primes.

Proof:

Suppose for the sake of contradiction, that there are only finitely many primes. Call them p_1, p_2, \ldots, p_k .

But [] is a contradiction! So there must be infinitely many primes.

Claim: There are infinitely many primes.

Proof:

Suppose for the sake of contradiction, that there are only finitely many primes. Call them p_1, p_2, \ldots, p_k .

Consider the number $q = p_1 \cdot p_2 \cdot \dots \cdot p_k + 1$

Case 1: q is prime

Case 2: q is composite

But [] is a contradiction! So there must be infinitely many primes.

Claim: There are infinitely many primes.

Proof:

Suppose for the sake of contradiction, that there are only finitely many primes. Call them p_1, p_2, \ldots, p_k .

Consider the number $q = p_1 \cdot p_2 \cdot \dots \cdot p_k + 1$

Case 1: q is prime

 $q > p_i$ for all *i*. But every prime was supposed to be on the list p_1, \ldots, p_k . A contradiction!

Case 2: q is composite

Some prime on the list (say p_i) divides q. So $q \% p_i = 0$. and $(p_1 p_2 \cdots p_k + 1) \% p_i = 1$. But $q = (p_1 p_2 \cdots p_k + 1)$. That's a contradiction!

In either case we have a contradiction! So there must be infinitely many primes.

"For all integers x, if x^2 is even, then x is even."

"For all integers x, if x^2 is even, then x is even."

Suppose for the sake of contradiction, there is an integer x, such that x^2 is even and x is odd.

• • •

[] is a contradiction, so for all integers x, if x^2 is even, then x is even.

"There is not an integer k such that for all integers $n, k \ge n$.

. . .

"There is not an integer k such that for all integers $n, k \ge n$.

Suppose, for the sake of contradiction, that there is an integer k such that for all integers $n, k \ge n$.

[] is a contradiction! So there is not an integer k such that for all integers $n, k \ge n$.