
Proof by Contradiction CSE 311 Autumn 2023

Lecture 13

Warm-up:

Show “if 𝑎2 is even, then 𝑎 is even.”



Trying a direct proof

∀𝑎(Even(𝑎2)→Even(𝑎)) “if 𝑎2 is even, then 𝑎 is even.”



Trying a direct proof

∀𝑎(Even(𝑎2)→Even(𝑎))

Let 𝑎 be an arbitrary integer and suppose that 𝑎2 is even.

By definition of even, 𝑎2 = 2𝑘 for some integer 𝑘.

Taking the positive square-root of each side, we get 𝑎 = 2𝑘

….

Therefore 𝑎 is even.

Taking a square root of a 

variable is tricky! It’s hard 

to do algebra on.



What should we do?

We’re trying to show an implication. How can we transform 
implications? Could that make it easier?

Maybe a transformation that would “switch the order” so that instead of 
taking a square root, we’re squaring…

Take a contrapositive!



Proving by contrapositive

∀𝑎(Even(𝑎2)→Even(𝑎)) ≡ ∀𝑎(¬Even(𝑎)→ ¬Even(𝑎2)) ≡ ∀𝑎(Odd(𝑎) → Odd (𝑎2))

We argue by contrapositive.

Let 𝑎 be an arbitrary integer and suppose 𝑎 is odd.

By definition of odd, 𝑎 = 2𝑘 + 1 for some integer 𝑘.

Squaring both sides, we get 𝑎2 = 2𝑘 + 1 2 = 4𝑘2 + 4𝑘 + 1

Rearranging, we get 𝑎2 = 2 2𝑘2 + 2𝑘 + 1. Since 𝑘 is an integer, 2𝑘2 + 2𝑘 is an 
integer, we thus get that 𝑎2 meets the definition of odd (being 2 times an integer 
plus one), as required. 

Since 𝑎 was arbitrary, we have that for every odd 𝑎, that 𝑎2 is also odd, which is the 
contrapositive of our original claim.



Proof by contrapositive in general

You might write down the contrapositive for yourself, but it doesn’t go 
in the proof.

Tell your reader you’re arguing by contrapositive right at the start! 
(Otherwise it’ll look like you’re proving the wrong thing!)

The quantifier(s) don’t change! Just the implication inside.



Another Proof

For all integers, 𝑎, 𝑏, 𝑐: Show that if 𝑎 ∤ (𝑏𝑐) then 𝑎 ∤ 𝑏 or 𝑎 ∤ 𝑐.

Proof:

Let 𝑎, 𝑏, 𝑐 be arbitrary integers, and suppose 𝑎 ∤ 𝑏𝑐 .

Then there is not an integer 𝑧 such that 𝑎𝑧 = 𝑏𝑐

…

So 𝑎 ∤ 𝑏 or 𝑎 ∤ 𝑐
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Another Proof

For all integers, 𝑎, 𝑏, 𝑐: Show that if 𝑎 ∤ (𝑏𝑐) then 𝑎 ∤ 𝑏 or 𝑎 ∤ 𝑐.

There has to be a better way! 

If only there were some equivalent implication…

One where we could negate everything…

Take the contrapositive of the statement:

For all integers, 𝑎, 𝑏, 𝑐: Show if 𝑎|𝑏 and 𝑎|𝑐 then 𝑎|(𝑏𝑐).



By contrapositive

Claim: For all integers, 𝑎, 𝑏, 𝑐: Show that if 𝑎 ∤ (𝑏𝑐) then 𝑎 ∤ 𝑏 or 𝑎 ∤ 𝑐.

We argue by contrapositive.

Let 𝑎, 𝑏, 𝑐 be arbitrary integers, and suppose 𝑎|𝑏 and 𝑎|𝑐. 

Therefore 𝑎|𝑏𝑐



By contrapositive

Claim: For all integers, 𝑎, 𝑏, 𝑐: Show that if 𝑎 ∤ (𝑏𝑐) then 𝑎 ∤ 𝑏 or 𝑎 ∤ 𝑐.

We argue by contrapositive.

Let 𝑎, 𝑏, 𝑐 be arbitrary integers, and suppose 𝑎|𝑏 and 𝑎|𝑐. 

By definition of divides, 𝑎𝑥 = 𝑏 and 𝑎𝑦 = 𝑐 for integers 𝑥 and 𝑦.

Multiplying the two equations, we get 𝑎𝑥𝑎𝑦 = 𝑏𝑐

Since 𝑎, 𝑥, 𝑦 are all integers, 𝑥𝑎𝑦 is an integer. Applying the definition of 
divides, we have 𝑎|𝑏𝑐.



Signs you might want to 
use proof by contrapositive

1. The hypothesis of the implication you’re proving has a “not” in it (that 
you think is making things difficult)

2. The target of the implication you’re proving has an “or” or “not” in it.

3. There’s a step that is difficult forward, but easy backwards
e.g., taking a square-root forward, squaring backwards.

4. You get halfway through the proof and you can’t “get ahold of” what 
you’re trying to show.
e.g., you’re working with a “not equal” instead of an “equals” or “every thing doesn’t 
have this property” instead of “some thing does have that property”

All of these are reasons you might want contrapositive. Sometimes you 
just have to try and see what happens!



Proof by Contradiction



Proof By Contradiction

Suppose the negation of your claim.

Show that you can derive False (i.e. (¬claim) → F )

A correct proof shows that the implication is true. 

So ¬claim must be False.

So claim must be True!



Proof By Contradiction Skeleton

Suppose, for the sake of contradiction ¬𝑝

…

𝑞

…

¬𝑞

But 𝑞 and ¬𝑞 is a contradiction! So we must have 𝑝.



Proof By Contradiction

Claim: 2 is irrational (i.e. not rational).

Proof:



Proof By Contradiction

Claim: 2 is irrational (i.e. not rational).

Proof:

Suppose for the sake of contradiction that 2 is rational.

But [] is a contradiction!



Proof By Contradiction

Claim: 2 is irrational (i.e. not rational).

Proof:

Suppose for the sake of contradiction that 2 is rational.

By definition of rational, there are integers s, 𝑡 such that t ≠ 0 and 2 = 𝑠/𝑡. 
Without loss of generality, let 𝑠/𝑡 be in lowest terms (i.e., with no common 
factors greater than 1). 

That’s a contradiction! We conclude 2 is irrational. 

If 𝑎2 is even then 𝑎 is even. 

Fancy mathematician speak for 

“I’m choosing more specific values, 

but it’s ok for me to do that.”



When can I say without loss of generality?

The claim you’re trying to prove is fully general still. What you’re doing looks 
like a new assumption but isn’t.

Here: we’d just divide 𝑝, 𝑞 by their common factors (i.e., put the fraction in 
lowest-terms) and continue the proof.

Other common example: 

Let 𝑥, 𝑦 be integers; without loss of generality, assume 𝑥 ≥ 𝑦 (one of them 
must be bigger, just give the bigger one the name 𝑥).

Only use if your reader will immediately agree that you can still prove the 
claim! If you’re worried, tell the reader how to get those values (here, define 
𝑝, 𝑞 as the reduced fraction, and continue with 𝑝, 𝑞 as variables).



Proof By Contradiction

Claim: 2 is irrational (i.e. not rational).

Proof:

Suppose for the sake of contradiction that 2 is rational.

By definition of rational, there are integers s, 𝑡 such that t ≠ 0 and 2 = 𝑠/𝑡. Without loss of 
generality, let 𝑠/𝑡 be in lowest terms (i.e., with no common factors greater than 1). 

2 =
𝑠

𝑡

2 =
𝑠2

𝑡2

2𝑡2 = 𝑠2 so 𝑠2 is even. 

That’s a contradiction! We conclude 2 is irrational. 

If 𝑎2 is even then 𝑎 is even. 



Proof By Contradiction

Claim: 2 is irrational (i.e. not rational).

Proof:

Suppose for the sake of contradiction that 2 is rational.

By definition of rational, there are integers s, 𝑡 such that t ≠ 0 and 2 = 𝑠/𝑡. Without loss of 
generality, let 𝑠/𝑡 be in lowest terms (i.e., with no common factors greater than 1). 

2 =
𝑠

𝑡

2 =
𝑠2

𝑡2

2𝑡2 = 𝑠2 so 𝑠2 is even. By the fact above, 𝑠 is even, i.e. s= 2𝑘 for some integer 𝑘. Squaring both 
sides 𝑠2 = 4𝑘2

Substituting into our original equation, we have: 2𝑡2 = 4𝑘2, i.e. 𝑡2 = 2𝑘2.

So 𝑡2 is even (by definition of even). Applying the fact above again, 𝑡 is even. 

But if both 𝑠 and 𝑡 are even, they have a common factor of 2. But we said the fraction was in lowest 
terms.

That’s a contradiction! We conclude 2 is irrational. 

If 𝑎2 is even then 𝑎 is even. 



Proof By Contradiction

How in the world did we know how to do that?

In real life…lots of attempts that didn’t work. 

Be very careful with proof by contradiction – without a clear target, you 
can easily end up in a loop of trying random things and getting 
nowhere. 



What’s the difference?

What’s the difference between proof by contrapositive and proof by 
contradiction?

Show 𝒑 → 𝒒 Proof by contradiction Proof by contrapositive

Starting Point ¬ 𝑝 → 𝑞 ≡ (𝑝 ∧ ¬𝑞) ¬𝑞

Target Something false ¬𝑝

Show 𝒑 Proof by contradiction Proof by contrapositive

Starting Point ¬𝑝 ---

Target Something false ---



Another Proof By Contradiction

Claim: There are infinitely many primes.

Proof:
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Suppose for the sake of contradiction, that there are only finitely many 
primes. Call them 𝑝1, 𝑝2, … , 𝑝𝑘.

But [] is a contradiction! So there must be infinitely many primes.



Another Proof By Contradiction

Claim: There are infinitely many primes.

Proof:

Suppose for the sake of contradiction, that there are only finitely many 
primes. Call them 𝑝1, 𝑝2, … , 𝑝𝑘.

Consider the number 𝑞 = 𝑝1 ⋅ 𝑝2 ⋅ ⋯ ⋅ 𝑝𝑘 + 1

Case 1: 𝑞 is prime

Case 2: 𝑞 is composite

But [] is a contradiction! So there must be infinitely many primes.



Another Proof By Contradiction

Claim: There are infinitely many primes.

Proof:

Suppose for the sake of contradiction, that there are only finitely many primes. Call 
them 𝑝1, 𝑝2, … , 𝑝𝑘.

Consider the number 𝑞 = 𝑝1 ⋅ 𝑝2 ⋅ ⋯ ⋅ 𝑝𝑘 + 1

Case 1: 𝑞 is prime

𝑞 > 𝑝𝑖 for all 𝑖. But every prime was supposed to be on the list 𝑝1, … , 𝑝𝑘. A 
contradiction!

Case 2: 𝑞 is composite

Some prime on the list (say 𝑝𝑖) divides 𝑞. So 𝑞%𝑝𝑖 = 0. and 𝑝1𝑝2⋯𝑝𝑘 + 1 %𝑝𝑖 =
1. But 𝑞 = 𝑝1𝑝2⋯𝑝𝑘 + 1 . That’s a contradiction!

In either case we have a contradiction! So there must be infinitely many primes.



Extra Practice



Just the Skeleton

“For all integers 𝑥, if 𝑥2 is even, then 𝑥 is even.”



Just the Skeleton

“For all integers 𝑥, if 𝑥2 is even, then 𝑥 is even.”

Suppose for the sake of contradiction, there is an integer 𝑥, such that 𝑥2

is even and 𝑥 is odd.

…

[] is a contradiction, so for all integers 𝑥, if 𝑥2 is even, then 𝑥 is even.



Just the Skeleton

“There is not an integer 𝑘 such that for all integers 𝑛, 𝑘 ≥ 𝑛.



Just the Skeleton

“There is not an integer 𝑘 such that for all integers 𝑛, 𝑘 ≥ 𝑛.

Suppose, for the sake of contradiction, that there is an integer 𝑘 such 
that for all integers 𝑛, 𝑘 ≥ 𝑛.

…

[] is a contradiction! So there is not an integer 𝑘 such that for all 
integers 𝑛, 𝑘 ≥ 𝑛.


