Try it

Solve the equation $7y \equiv 3 \pmod{26}$

What do we need to find? The multiplicative inverse of 7(mod 26)

An application of all of this modular arithmetic

Amazon chooses random 512-bit (or 1024-bit) prime numbers p, q and an exponent e (often about 60,000).

Amazon calculates n = pq. They tell your computer (n, e) (not p, q)

You want to send Amazon your credit card number *a*.

You compute $C = a^e \% n$ and send Amazon C.

Amazon computes d, the multiplicative inverse of $e \pmod{[p-1][q-1]}$ Amazon finds $C^d \% n$

Fact: $a = C^d \% n$ as long as 0 < a < n and $p \nmid a$ and $q \nmid a$

Let's build a faster algorithm.

```
Fast exponentiation - simple case. What if e is exactly 2<sup>16</sup>?
int total = 1;
for (int i = 0; i < e; i++) {
    total = a * total % n;
}
Instead:
int total = a;
for (int i = 0; i < log(e); i++) {
    total = total^2 % n;
}</pre>
```

Fast Exponentiation Algorithm

What if *e* isn't exactly a power of 2?

Step 1: Write *e* in binary.

Step 2: Find $a^c \% n$ for c every power of 2 up to e.

Step 3: calculate a^e by multiplying a^c for all c where binary expansion of e had a 1.