Try it

Solve the equation $7 y \equiv 3(\bmod 26)$

What do we need to find?
The multiplicative inverse of $7(\bmod 26)$

An application of all of this modular arithmetic

Amazon chooses random 512-bit (or 1024-bit) prime numbers p,q and an exponent e (often about 60,000).
Amazon calculates $\mathrm{n}=p q$. They tell your computer $(n, e)($ not $p, q)$
You want to send Amazon your credit card number a.
You compute $C=a^{e} \% n$ and send Amazon C.
Amazon computes d, the multiplicative inverse of $e(\bmod [p-1][q-1])$ Amazon finds $C^{d} \% n$

Fact: $a=C^{d} \% n$ as long as $0<a<n$ and $p \nmid a$ and $q \nmid a$

Let's build a faster algorithm.

```
Fast exponentiation - simple case. What if e is exactly 2 }\mp@subsup{2}{}{16}\mathrm{ ?
int total = 1;
for(int i = 0; i < e; i++){
    total = a * total % n;
}
Instead:
int total = a;
for(int i = 0; i < log(e); i++){
    total = total^2 % n;
}
```


Fast Exponentiation Algorithm

What if e isn't exactly a power of 2 ?

Step 1: Write e in binary.
Step 2: Find $a^{c} \% n$ for c every power of 2 up to e.
Step 3: calculate a^{e} by multiplying a^{c} for all c where binary expansion of e had a 1 .

