More Induction

Induction doesn't only work for code!
Show that $\sum_{i=0}^{n} 2^{i}=1+2+4+\cdots+2^{n}=2^{n+1}-1$.
Let $P(n)$ be " $\sum_{i=0}^{n} 2^{i}=2^{n+1}-1$."
We show $P(n)$ holds for all n by induction on n.
Base Case ()
Inductive Hypothesis:
Inductive Step:
$P(n)$ holds for all $n \geq 0$ by the principle of induction.

Let's Try Another Induction Proof

Let $g(n)= \begin{cases}2 & \text { if } n=2 \\ g(n-1)^{2}+3 g(n-1) & \text { if } n>2\end{cases}$
Prove $g(n)$ is even for all $n \geq 2$ by induction on n.

Let's just set this one up, weill leave the individual pieces as exercises.

Induction on Primes.

Let $P(n)$ be " n can be written as a product of primes."
We show $P(n)$ for all $n \geq 2$ by induction on n.
Base Case $(\boldsymbol{n}=\mathbf{2}): 2$ is a product of just itself. Since 2 is prime, it is written as a product of primes.
Inductive Hypothesis: Suppose $P(k)$ holds for an arbitrary integer $k \geq 2$.
Inductive Step:
Case $1, k+1$ is prime: then $k+1$ is automatically written as a product of primes.
Case $2, k+1$ is composite:

Therefore $P(k+1)$.
$P(n)$ holds for all $n \geq 2$ by the principle of induction.

Making Induction Proofs Pretty

All of our strong induction proofs will come in 5 easy(?) steps!

1. Define $P(n)$. State that your proof is by induction on n.
2. Base Case: Show $P(b)$ i.e. show the base case
3. Inductive Hypothesis: Suppose $\mathrm{P}(\mathrm{b}) \wedge \cdots \wedge P(k)$ for an arbitrary $k \geq b$.
4. Inductive Step: Show $P(k+1)$ (i.e. get $[\mathrm{P}(\mathrm{b}) \wedge \cdots \wedge P(k)] \rightarrow P(k+1))$
5. Conclude by saying $P(n)$ is true for all $n \geq b$ by the principle of induction.
