Let's Try Another! Stamp Collecting

I have 4 cent stamps and 5 cent stamps (as many as I want of each). Prove that I can make exactly n cents worth of stamps for all $n \geq 12$.

Try for a few values.
Then think...how would the inductive step go?

Stamp Collection (attempt)

Define $P(n)$ I can make n cents of stamps with just 4 and 5 cent stamps. We prove $P(n)$ is true for all $n \geq 12$ by induction on n.
Base Case:
12 cents can be made with three 4 cent stamps.
Inductive Hypothesis Suppose [maybe some other stuff and] $P(k)$, for an arbitrary $k \geq 12$.
Inductive Step:
We want to make $k+1$ cents of stamps. By IH we can make $k-3$ cents exactly with stamps. Adding another 4 cent stamp gives exactly $k+1$ cents.

Stamp Collection, Done Wrong

Define $P(n)$ I can make n cents of stamps with just 4 and 5 cent stamps. We prove $P(n)$ is true for all $n \geq 12$ by induction on n. Base Case:
12 cents can be made with three 4 cent stamps.
Inductive Hypothesis Suppose $P(k), k \geq 12$.
Inductive Step:
We want to make $k+1$ cents of stamps. By IH we can make k cents exactly with stamps. Replace one of the 4 cent stamps with a 5 cent stamp.
$P(n)$ holds for all n by the principle of induction.

Fibonacci Inequality

Show that $f(n) \leq 2^{n}$ for all $n \geq 0$ by induction.

