
Even More Induction CSE 311 Autumn 2023

Lecture 17



Midterm Logistics

Midterm on Wed Nov. 15 in the evening (6-7:30)

If you need a conflict exam, there’s a form to request one! Please fill out 
by Wednesday evening.
(If you end up sick the day of the exam don’t use that form, send an email to 
Robbie when you realize you can’t make it)

We’re going to write a 50 minute exam, but give you 90 minutes to do 
it.

You’re allowed one page of handwritten notes.

More details (old exams, topics that are/aren’t allowed, etc.) on the 
exams page.

https://docs.google.com/forms/d/e/1FAIpQLSc59DYtQDC4AH8F_sBuBzVDidV8ZwTqqmFXh3xC0NzNEgycTQ/viewform?usp=sf_link


Let’s Try Another! Stamp Collecting

I have 4 cent stamps and 5 cent stamps (as many as I want of each). 
Prove that I can make exactly 𝑛 cents worth of stamps for all 𝑛 ≥ 12.

Try for a few values.

Then think…how would the inductive step go?



Stamp Collection (attempt)

Define 𝑃(𝑛) I can make 𝑛 cents of stamps with just 4 and 5 cent stamps.

We prove 𝑃(𝑛) is true for all 𝑛 ≥ 12 by induction on 𝑛.

Base Case:

12 cents can be made with three 4 cent stamps.

Inductive Hypothesis Suppose [maybe some other stuff and] 𝑃(𝑘), for an 
arbitrary 𝑘 ≥ 12.

Inductive Step:

We want to make 𝑘 + 1 cents of stamps. By IH we can make 𝑘 − 3 cents 
exactly with stamps. Adding another 4 cent stamp gives exactly 𝑘 + 1
cents. 



Stamp Collection

Is the proof right?

How do we know 𝑃(13)

We’re not the base case, so our inductive hypothesis assumes 𝑃(12), 
and then we say if 𝑃 9 then 𝑃(13).

Wait a second….

If you go back 𝑠 steps every time, you need 𝑠 base cases. 

Or else the first few values aren’t proven.



Stamp Collection

Define 𝑃(𝑛) I can make 𝑛 cents of stamps with just 4 and 5 cent stamps.

We prove 𝑃(𝑛) is true for all 𝑛 ≥ 12 by induction on 𝑛.

Base Case:

12 cents can be made with three 4 cent stamps.
13  cents can be made with two 4 cent stamps and one 5 cent stamp.
14 cents can be made with one 4 cent stamp and two 5 cent stamps.
15 cents can be made with three 5 cent stamps.

Inductive Hypothesis Suppose P 12 ∧ 𝑃 13 ∧ ⋯∧ 𝑃(𝑘), for an arbitrary 𝑘 ≥ 15.

Inductive Step:

We want to make 𝑘 + 1 cents of stamps. By IH we can make 𝑘 − 3 cents exactly 
with stamps. Adding another 4 cent stamp gives exactly 𝑘 + 1 cents. 



A good last check

After you’ve finished writing an inductive proof, pause.

If your inductive step always goes back 𝑠 steps, you need 𝑠 base cases 
(otherwise 𝑏 + 1 will go back before the base cases you’ve shown). And 
make sure your inductive hypothesis is strong enough.

If your inductive step is going back a varying (unknown) number of 
steps, check the first few values above the base case, make sure your 
cases are really covered. And make sure your IH is strong.



Stamp Collection, Done Wrong

Define 𝑃(𝑛) I can make 𝑛 cents of stamps with just 4 and 5 cent stamps.

We prove 𝑃(𝑛) is true for all 𝑛 ≥ 12 by induction on 𝑛.

Base Case:

12 cents can be made with three 4 cent stamps.
Inductive Hypothesis Suppose 𝑃(𝑘), 𝑘 ≥ 12.

Inductive Step:

We want to make 𝑘 + 1 cents of stamps. By IH we can make 𝑘 cents 
exactly with stamps. Replace one of the 4 cent stamps with a 5 cent 
stamp.

𝑃(𝑛) holds for all 𝑛 by the principle of induction.



Stamp Collection, Done Wrong

What if the starting point doesn’t have any 4 cent stamps?

Like, say, 15 cents = 5+5+5.



Making Induction Proofs Pretty

All of our induction proofs will come in 5 easy(?) steps!

1. Define 𝑃(𝑛). State that your proof is by induction on 𝑛.

2. Base Cases: Show 𝑃 𝑏𝑚𝑖𝑛 , 𝑃 𝑏𝑚𝑖𝑛+1 …𝑃(𝑏𝑚𝑎𝑥) i.e. show the base cases

3. Inductive Hypothesis: Suppose 𝑃 𝑏𝑚𝑖𝑛 ∧ 𝑃 𝑏𝑚𝑖𝑛 + 1 ∧ ⋯∧ 𝑃(𝑘) for an 
arbitrary 𝑘 ≥ 𝑏𝑚𝑎𝑥 . (The smallest value of 𝑘 assumes all bases cases, but 
nothing else)

4. Inductive Step: Show 𝑃 𝑘 + 1 (i.e. get [P(b𝑚𝑖𝑛) ∧ ⋯∧ 𝑃 𝑘 ] → 𝑃(𝑘 + 1))

5. Conclude by saying 𝑃 𝑛 is true for all 𝑛 ≥ 𝑏𝑚𝑖𝑛 by the principle of 
induction. 



Gridding

I’ve got a bunch of these 3 piece tiles.

I want to fill a 2𝑛x2𝑛 grid (𝑛 ≥ 1) with the pieces, except for a 1x1 spot 
in a corner.  



Gridding: Not a formal proof, just a sketch

Base Case: 𝑛 = 1

Inductive hypothesis: Suppose you can tile a 2𝑘x2𝑘 grid, except for a 
corner. 

Inductive step: 2𝑘+1x2𝑘+1, divide into quarters. By IH can tile…



Recursively Defined Functions

Just like induction works will with recursive code, it also works well for 
recursively-defined functions.

Define the Fibonacci numbers as follows:

𝑓 0 = 1

𝑓 1 = 1

𝑓 𝑛 = 𝑓 𝑛 − 1 + 𝑓(𝑛 − 2) for all 𝑛 ∈ ℕ, 𝑛 ≥ 2.

*This is a somewhat unusual definition, 𝑓 0 = 0, 𝑓 1 = 1 is more 
common.



Fibonacci Inequality

Show that 𝑓 𝑛 ≤ 2𝑛 for all 𝑛 ≥ 0 by induction.

𝑓 0 = 1; 𝑓 1 = 1
𝑓 𝑛 = 𝑓 𝑛 − 1 + 𝑓(𝑛 − 2) for all 𝑛 ∈ ℕ, 𝑛 ≥ 2.



Fibonacci Inequality

Show that 𝑓 𝑛 ≤ 2𝑛 for all 𝑛 ≥ 0 by induction.

Define 𝑃(𝑛) to be “𝑓 𝑛 ≤ 2𝑛” We show 𝑃(𝑛) is true for all 𝑛 ≥ 0 by 
induction on 𝑛.

Base Cases: 𝑛 = 0 : 𝑓 0 = 1 ≤ 1 = 20.

𝑛 = 1 : 𝑓 1 = 1 ≤ 2 = 21.

Inductive Hypothesis: Suppose 𝑃 0 ∧ 𝑃 1 ∧ ⋯∧ 𝑃(𝑘) for an arbitrary 
𝑘 ≥ 1.

Inductive step:

Target: 𝑃 𝑘 + 1 . i.e. 𝑓 𝑘 + 1 ≤ 2𝑘+1

𝑓 0 = 1; 𝑓 1 = 1
𝑓 𝑛 = 𝑓 𝑛 − 1 + 𝑓(𝑛 − 2) for all 𝑛 ∈ ℕ, 𝑛 ≥ 2.



Fibonacci Inequality

Show that 𝑓 𝑛 ≤ 2𝑛 for all 𝑛 ≥ 0 by induction.

Define 𝑃(𝑛) to be “𝑓 𝑛 ≤ 2𝑛” We show 𝑃(𝑛) is true for all 𝑛 ≥ 0 by 
induction on 𝑛.

Base Cases: 𝑛 = 0 : 𝑓 0 = 1 ≤ 1 = 20.

𝑛 = 1 : 𝑓 1 = 1 ≤ 2 = 21.

Inductive Hypothesis: Suppose 𝑃 0 ∧ 𝑃 1 ∧ ⋯∧ 𝑃(𝑘) for an arbitrary 𝑘 ≥ 1.

Inductive step: 𝑓 𝑘 + 1 = 𝑓 𝑘 + 𝑓(𝑘 − 1) by the definition of the Fibonacci 
numbers. Applying IH twice, we have 𝑓 𝑘 + 1 ≤ 2𝑘 + 2𝑘−1 < 2𝑘 + 2𝑘 =
2𝑘+1.

Therefore, we have 𝑃(𝑛) for all 𝑛 ≥ 0 by the principle of induction.

𝑓 0 = 1; 𝑓 1 = 1
𝑓 𝑛 = 𝑓 𝑛 − 1 + 𝑓(𝑛 − 2) for all 𝑛 ∈ ℕ, 𝑛 ≥ 2.



Claim: 3|(22𝑛−1) for all 𝑛 ∈ ℕ.

[Define 𝑃(𝑛)]

Base Case

Inductive Hypothesis

Inductive Step

[conclusion]



Claim: 3|(22𝑛−1) for all 𝑛 ∈ ℕ.

Let 𝑃 𝑛 be “3|(22𝑛−1).” We show 𝑃(𝑛) holds for all 𝑛 ∈ ℕ.

Base Case (𝑛 = 0) note that 22𝑛 − 1 = 20 − 1 = 0. Since 3 ⋅ 0 = 0, and 
0 is an integer, 3|(22⋅0−1).

Inductive Hypothesis: Suppose 𝑃(𝑘) holds for an arbitrary 𝑘 ≥ 0

Inductive Step: 

Target: 𝑃(𝑘 + 1), i.e. 3|(22(𝑘+1)−1)

Therefore, we have 𝑃(𝑛) for all 𝑛 ∈ ℕ by the principle of induction.



Claim: 3|(22𝑛−1) for all 𝑛 ∈ ℕ.

Let 𝑃 𝑛 be “3|(22𝑛−1).” We show 𝑃(𝑛) holds for all 𝑛 ∈ ℕ.

Base Case (𝑛 = 0) note that 22𝑛 − 1 = 20 − 1 = 0. Since 3 ⋅ 0 = 0, and 0 is an 
integer, 3|(22⋅0−1).

Inductive Hypothesis: Suppose 𝑃(𝑘) holds for an arbitrary 𝑘 ≥ 0

Inductive Step: By inductive hypothesis, 3|(22𝑘−1). i.e. there is an integer 𝑗
such that 3𝑗 = 22𝑘 − 1. 

22(𝑘+1) − 1 = 4 ⋅ 22𝑘 − 1

Target: 𝑃(𝑘 + 1), i.e. 3|(22(𝑘+1)−1)

Therefore, we have 𝑃(𝑛) for all 𝑛 ∈ ℕ by the principle of induction.

FORCE the expression in your IH to appear



Claim: 3|(22𝑛−1) for all 𝑛 ∈ ℕ.

Let 𝑃 𝑛 be “3|(22𝑛−1).” We show 𝑃(𝑛) holds for all 𝑛 ∈ ℕ.

Base Case (𝑛 = 0) note that 22𝑛 − 1 = 20 − 1 = 0. Since 3 ⋅ 0 = 0, and 0 is an integer, 
3|(22⋅0−1).

Inductive Hypothesis: Suppose 𝑃(𝑘) holds for an arbitrary 𝑘 ≥ 0

Inductive Step: By inductive hypothesis, 3|(22𝑘−1). i.e. there is an integer 𝑗 such that 3𝑗 =
22𝑘 − 1. 

22(𝑘+1) − 1 = 4 ⋅ 22𝑘 − 1 = 4 22𝑘 − 1 + 4 − 1

By IH, we can replace 22𝑘 − 1 with 3𝑗 for an integer 𝑗

22(𝑘+1) − 1 = 4 3𝑗 + 4 − 1 = 3 4𝑗 + 3 = 3 4𝑗 + 1

Since 4𝑗 + 1 is an integer, we meet the definition of divides and we have:

Target: 𝑃(𝑘 + 1), i.e. 3|(22(𝑘+1)−1)

Therefore, we have 𝑃(𝑛) for all 𝑛 ∈ ℕ by the principle of induction.



Claim: 3|(22𝑛−1) for all 𝑛 ∈ ℕ.

That inductive step might still seem like magic. 

It sometimes helps to run through examples, and look for patterns:

22⋅0 − 1 = 0 = 3 ⋅ 0

22⋅1 − 1 = 3 = 3 ⋅ 1

22⋅2 − 1 = 15 = 3 ⋅ 5

22⋅3 − 1 = 63 = 3 ⋅ 21

22⋅4 − 1 = 255 = 3 ⋅ 85

22⋅5 − 1 = 1023 = 3 ⋅ 341

The divisor goes from 𝑘 to 4𝑘 + 1
0 → 4 ⋅ 0 + 1 = 1
1 → 4 ⋅ 1 + 1 = 5
5 → 4 ⋅ 5 + 1 = 21

…

That might give us a hint that 4𝑘 + 1 will be 

in the algebra somewhere, and give us 

another intermediate target.



Induction: Hats!

You have 𝑛 people in a line (𝑛 ≥ 2). Each of them wears either a purple 
hat or a gold hat. The person at the front of the line wears a purple hat. 
The person at the back of the line wears a gold hat. 

Show that for every arrangement of the line satisfying the rule above, 
there is a person with a purple hat next to someone with a gold hat. 

Yes this is kinda obvious. I promise this is good induction practice.

Yes you could argue this by contradiction. I promise this is good 
induction practice.



Induction: Hats!

Define 𝑃(𝑛) to be “in every line of 𝑛 people with gold and purple hats, with a 
purple hat at one end and a gold hat at the other, there is a person with a 
purple hat next to someone with a gold hat”

We show 𝑃(𝑛) for all integers 𝑛 ≥ 2 by induction on 𝑛.

Base Case: 𝑛 = 2

Inductive Hypothesis:

Inductive Step: 

By the principle of induction, we have 𝑃(𝑛) for all 𝑛 ≥ 2



Induction: Hats!

Define 𝑃(𝑛) to be “in every line of 𝑛 people with gold and purple hats, with a purple hat at one end 
and a gold hat at the other, there is a person with a purple hat next to someone with a gold hat”

We show 𝑃(𝑛) for all integers 𝑛 ≥ 2 by induction on 𝑛.

Base Case: 𝑛 = 2 The line must be just a person with a purple hat and a person with a gold hat, who 
are next to each other. 

Inductive Hypothesis: Suppose 𝑃(𝑘) holds for an arbitrary 𝑘 ≥ 2.

Inductive Step: Consider an arbitrary line with 𝑘 + 1 people in purple and gold hats, with a gold hat at 
one end and a purple hat at the other.

Target: there is someone in a purple hat next to someone in a gold hat.

By the principle of induction, we have 𝑃(𝑛) for all 𝑛 ≥ 2



Induction: Hats!

Define 𝑃(𝑛) to be “in every line of 𝑛 people with gold and purple hats, with a purple hat at one end 
and a gold hat at the other, there is a person with a purple hat next to someone with a gold hat”

We show 𝑃(𝑛) for all integers 𝑛 ≥ 2 by induction on 𝑛.

Base Case: 𝑛 = 2 The line must be just a person with a purple hat and a person with a gold hat, who 
are next to each other. 

Inductive Hypothesis: Suppose 𝑃(𝑘) holds for an arbitrary 𝑘 ≥ 2.

Inductive Step: Consider an arbitrary line with 𝑘 + 1 people in purple and gold hats, with a gold hat at 
one end and a purple hat at the other.

Case 1: There is someone with a purple hat next to the person in the gold hat at one end. Then those 
people are the required adjacent opposite hats.

Case 2:. There is a person with a gold hat next to the person in the gold hat at the end. Then the line 
from the second person to the end is length 𝑘, has a gold hat at one end and a purple hat at the 
other. Applying the inductive hypothesis, there is an adjacent, opposite-hat wearing pair.

In either case we have 𝑃(𝑘 + 1).

By the principle of induction, we have 𝑃(𝑛) for all 𝑛 ≥ 2



Fibonacci Inequality Two

Show that 𝑓 𝑛 ≥ 2𝑛/2 for all 𝑛 ≥ 2 by induction.

[Define 𝑃(𝑛)]

Base Cases: 

Inductive Hypothesis:

Inductive step: 

Therefore, we have 𝑃(𝑛) for all 𝑛 ≥ 0 by the principle of induction.

𝑓 0 = 1; 𝑓 1 = 1
𝑓 𝑛 = 𝑓 𝑛 − 1 + 𝑓(𝑛 − 2) for all 𝑛 ∈ ℕ, 𝑛 ≥ 2.



Fibonacci Inequality Two

Show that 𝑓 𝑛 ≥ 2𝑛/2 for all 𝑛 ≥ 2 by induction.

Define 𝑃(𝑛) to be “𝑓 𝑛 ≥ 2𝑛/2” We show 𝑃(𝑛) is true for all 𝑛 ≥ 2 by induction on 𝑛.

Base Cases: 𝑓 2 = 𝑓 1 + 𝑓 0 = 2 ≥ 2 = 21 = 22/2

𝑓 3 = 𝑓 2 + 𝑓 1 = 2 + 1 = 3 = 2 ⋅
3

2
≥ 2 2 = 21.5 = 23/2

Inductive Hypothesis: Suppose 𝑃 2 ∧ 𝑃 3 ∧ ⋯∧ 𝑃(𝑘) for an arbitrary 𝑘 ≥ 3.

Inductive step: 𝑓 𝑘 + 1 = 𝑓 𝑘 + 𝑓(𝑘 − 1) by the definition of the Fibonacci numbers. Applying IH 
twice, we have 

Target: 𝑓 𝑘 + 1 ≥ 2(𝑘+1)/2

Therefore, we have 𝑃(𝑛) for all 𝑛 ≥ 0 by the principle of induction.

𝑓 0 = 1; 𝑓 1 = 1
𝑓 𝑛 = 𝑓 𝑛 − 1 + 𝑓(𝑛 − 2) for all 𝑛 ∈ ℕ, 𝑛 ≥ 2.



Fibonacci Inequality Two

Show that 𝑓 𝑛 ≥ 2𝑛/2 for all 𝑛 ≥ 2 by induction.

Define 𝑃(𝑛) to be “𝑓 𝑛 ≥ 2𝑛/2” We show 𝑃(𝑛) is true for all 𝑛 ≥ 2 by induction on 𝑛.

Base Cases: 𝑓 2 = 𝑓 1 + 𝑓 0 = 2 ≥ 2 = 21 = 22/2

𝑓 3 = 𝑓 2 + 𝑓 1 = 2 + 1 = 3 = 2 ⋅
3

2
≥ 2 2 = 21.5 = 23/2

Inductive Hypothesis: Suppose 𝑃 2 ∧ 𝑃 3 ∧ ⋯∧ 𝑃(𝑘) for an arbitrary 𝑘 ≥ 3.

Inductive step: 𝑓 𝑘 + 1 = 𝑓 𝑘 + 𝑓(𝑘 − 1) by the definition of the Fibonacci numbers. Applying IH 
twice, we have 

𝑓 𝑘 + 1 ≥ 2𝑘/2 + 2(𝑘−1)/2

≥ 2(𝑘+1)/2

Therefore, we have 𝑃(𝑛) for all 𝑛 ≥ 0 by the principle of induction.

𝑓 0 = 1; 𝑓 1 = 1
𝑓 𝑛 = 𝑓 𝑛 − 1 + 𝑓(𝑛 − 2) for all 𝑛 ∈ ℕ, 𝑛 ≥ 2.



Fibonacci Inequality Two

Show that 𝑓 𝑛 ≥ 2𝑛/2 for all 𝑛 ≥ 2 by induction.

Define 𝑃(𝑛) to be “𝑓 𝑛 ≥ 2𝑛/2” We show 𝑃(𝑛) is true for all 𝑛 ≥ 2 by induction on 𝑛.

Base Cases: 𝑓 2 = 𝑓 1 + 𝑓 0 = 2 ≥ 2 = 21 = 22/2

𝑓 3 = 𝑓 2 + 𝑓 1 = 2 + 1 = 3 = 2 ⋅
3

2
≥ 2 2 = 21.5 = 23/2

Inductive Hypothesis: Suppose 𝑃 2 ∧ 𝑃 3 ∧ ⋯∧ 𝑃(𝑘) for an arbitrary 𝑘 ≥ 3.

Inductive step: 𝑓 𝑘 + 1 = 𝑓 𝑘 + 𝑓(𝑘 − 1) by the definition of the Fibonacci numbers. Applying IH 
twice, we have 

𝑓 𝑘 + 1 ≥ 2𝑘/2 + 2(𝑘−1)/2

= 2(𝑘−1)/2 2 + 1

≥ 2(𝑘−1)/2 ⋅ 2

≥ 2(𝑘+1)/2

Therefore, we have 𝑃(𝑛) for all 𝑛 ≥ 0 by the principle of induction.

𝑓 0 = 1; 𝑓 1 = 1
𝑓 𝑛 = 𝑓 𝑛 − 1 + 𝑓(𝑛 − 2) for all 𝑛 ∈ ℕ, 𝑛 ≥ 2.



More Practice



Even More Induction Practice

Let 𝑔 𝑛 = ቊ
1 if 𝑛 = 0

𝑛 ⋅ 𝑔 𝑛 − 1 otherwise

Let ℎ 𝑛 = 𝑛𝑛

Claim: ℎ 𝑛 ≥ 𝑔 𝑛 for all integers 𝑛 ≥ 1



Even More Induction Practice

Define 𝑃 𝑛 to be “h 𝑛 ≥ 𝑔(𝑛) for all integers 𝑛 ≥ 1

We show 𝑃(𝑛) for all 𝑛 ≥ 1 by induction on 𝑛.

Base Case

Inductive Hypothesis:

Inductive Step: 

Thus 𝑃 𝑘 + 1 holds. 

Therefore, we have 𝑃(𝑛) for all 𝑛 ≥ 1 by induction on 𝑛. Let 𝑔 𝑛 = ቊ
1 if 𝑛 = 0

𝑛 ⋅ 𝑔 𝑛 − 1 otherwise

Let ℎ 𝑛 = 𝑛𝑛



Even More Induction Practice

Define 𝑃 𝑛 to be “h 𝑛 ≥ 𝑔(𝑛) for all integers 𝑛 ≥ 1

We show 𝑃(𝑛) for all 𝑛 ≥ 1 by induction on 𝑛.

Base Case 𝑛 = 1 : ℎ 𝑛 = 11 = 1 ≥ 1 = 1 ⋅ 1 = 1 ⋅ 𝑔 0 = 𝑔(1).

Inductive Hypothesis: Suppose 𝑃(𝑘) is true for an arbitrary 𝑘 ≥ 1.

Inductive Step: 

𝑔 𝑘 + 1 = 𝑘 + 1 ⋅ 𝑔 𝑘

= 𝑘 + 1 𝑘+1.

Thus 𝑃 𝑘 + 1 holds. 

Therefore, we have 𝑃(𝑛) for all 𝑛 ≥ 1 by induction on 𝑛. Let 𝑔 𝑛 = ቊ
1 if 𝑛 = 0

𝑛 ⋅ 𝑔 𝑛 − 1 otherwise

Let ℎ 𝑛 = 𝑛𝑛



Even More Induction Practice

Define 𝑃 𝑛 to be “h 𝑛 ≥ 𝑔(𝑛) for all integers 𝑛 ≥ 1

We show 𝑃(𝑛) for all 𝑛 ≥ 1 by induction on 𝑛.

Base Case 𝑛 = 1 : ℎ 𝑛 = 11 = 1 ≥ 1 = 1 ⋅ 1 = 1 ⋅ 𝑔 0 = 𝑔(1).

Inductive Hypothesis: Suppose 𝑃(𝑘) is true for an arbitrary 𝑘 ≥ 1.

Inductive Step: 

𝑔 𝑘 + 1 = 𝑘 + 1 ⋅ 𝑔 𝑘

≤ 𝑘 + 1 ⋅ ℎ(𝑘) by IH.

= 𝑘 + 1 𝑘+1.

Thus 𝑃 𝑘 + 1 holds. 

Therefore, we have 𝑃(𝑛) for all 𝑛 ≥ 1 by induction on 𝑛. Let 𝑔 𝑛 = ቊ
1 if 𝑛 = 0

𝑛 ⋅ 𝑔 𝑛 − 1 otherwise

Let ℎ 𝑛 = 𝑛𝑛



Even More Induction Practice

Define 𝑃 𝑛 to be “h 𝑛 ≥ 𝑔(𝑛) for all integers 𝑛 ≥ 1

We show 𝑃(𝑛) for all 𝑛 ≥ 1 by induction on 𝑛.

Base Case 𝑛 = 1 : ℎ 𝑛 = 11 = 1 ≥ 1 = 1 ⋅ 1 = 1 ⋅ 𝑔 0 = 𝑔(1).

Inductive Hypothesis: Suppose 𝑃(𝑘) is true for an arbitrary 𝑘 ≥ 1.

Inductive Step: 

𝑔 𝑘 + 1 = 𝑘 + 1 ⋅ 𝑔 𝑘

≤ 𝑘 + 1 ⋅ ℎ(𝑘) by IH.

≤ 𝑘 + 1 ⋅ 𝑘𝑘 by definition of ℎ(𝑘)

≤ 𝑘 + 1 ⋅ 𝑘 + 1 𝑘

= 𝑘 + 1 𝑘+1.

Thus 𝑃 𝑘 + 1 holds. 

Therefore, we have 𝑃(𝑛) for all 𝑛 ≥ 1 by induction on 𝑛. Let 𝑔 𝑛 = ቊ
1 if 𝑛 = 0

𝑛 ⋅ 𝑔 𝑛 − 1 otherwise

Let ℎ 𝑛 = 𝑛𝑛



Even More Induction Practice

Define 𝑃 𝑛 to be “h 𝑛 ≥ 𝑔(𝑛) for all integers 𝑛 ≥ 1

We show 𝑃(𝑛) for all 𝑛 ≥ 1 by induction on 𝑛.

Base Case 𝑛 = 1 : ℎ 𝑛 = 11 = 1 ≥ 1 = 1 ⋅ 1 = 1 ⋅ 𝑔 0 = 𝑔(1).

Inductive Hypothesis: Suppose 𝑃(𝑘) is true for an arbitrary 𝑘 ≥ 1.

Inductive Step: 

𝑔 𝑘 + 1 = 𝑘 + 1 ⋅ 𝑔 𝑘

≤ 𝑘 + 1 ⋅ ℎ(𝑘) by IH.

≤ 𝑘 + 1 ⋅ 𝑘𝑘 by definition of ℎ(𝑘)

≤ 𝑘 + 1 ⋅ 𝑘 + 1 𝑘

= 𝑘 + 1 𝑘+1.

Thus 𝑃 𝑘 + 1 holds. 

Therefore, we have 𝑃(𝑛) for all 𝑛 ≥ 1 by induction on 𝑛. Let 𝑔 𝑛 = ቊ
1 if 𝑛 = 0

𝑛 ⋅ 𝑔 𝑛 − 1 otherwise

Let ℎ 𝑛 = 𝑛𝑛



Even More Induction Practice: Sums

Let 𝑃(𝑛) be σ𝑖=0
𝑛 2 + 3𝑖 =

𝑛+1 3𝑛+4

2

Show 𝑃(𝑛) for all 𝑛 ∈ ℕ by induction on 𝑛.

Base Case (𝑛 = 0):

Inductive Hypothesis:

Inductive Step: 

[Conclusion]



Even More Induction Practice: Sums

Let 𝑃(𝑛) be σ𝑖=0
𝑛 2 + 3𝑖 =

𝑛+1 3𝑛+4

2

Show 𝑃(𝑛) for all 𝑛 ∈ ℕ by induction on 𝑛.

Base Case (𝑛 = 0): σ𝑖=0
0 2 + 3𝑖 = 2 =

4

2
=

0+1 3⋅0+4

2

Inductive Hypothesis: Suppose 𝑃(𝑘) is true for an arbitrary 𝑘 ≥ 0.

Inductive Step: 

Target: σ𝑖=0
𝑘+1 2 + 3𝑖 =

k+1 +1 3 k+1 +4

2



Even More Induction Practice: Sums

Let 𝑃(𝑛) be σ𝑖=0
𝑛 2 + 3𝑖 =

𝑛+1 3𝑛+4

2

Show 𝑃(𝑛) for all 𝑛 ∈ ℕ by induction on 𝑛.

Base Case (𝑛 = 0): σ𝑖=0
0 2 + 3𝑖 = 2 =

4

2
=

0+1 3⋅0+4

2

Inductive Hypothesis: Suppose 𝑃(𝑘) is true for an arbitrary 𝑘 ≥ 0.

Inductive Step: 

σ𝑖=0
𝑘+1 2 + 3𝑖 = (σ𝑖=0

𝑘 2 + 3𝑖) + 2 + 3 𝑘 + 1 . By IH, we have:

σ𝑖=0
𝑘+1 2 + 3𝑖 =

k+1 3k+4

2
+ 2 + 3k + 3 =? ? ? ?

=
k + 1 + 1 3 k + 1 + 4

2



Even More Induction Practice: Sums

Let 𝑃(𝑛) be σ𝑖=0
𝑛 2 + 3𝑖 =

𝑛+1 3𝑛+4

2

Show 𝑃(𝑛) for all 𝑛 ∈ ℕ by induction on 𝑛.

Base Case (𝑛 = 0): σ𝑖=0
0 2 + 3𝑖 = 2 =

4

2
=

0+1 3⋅0+4

2

Inductive Hypothesis: Suppose 𝑃(𝑘) is true for an arbitrary 𝑘 ≥ 0.

Inductive Step: 

σ𝑖=0
𝑘+12 + 3𝑖 = (σ𝑖=0

𝑘 2 + 3𝑖) + 2 + 3 𝑘 + 1 . By IH, we have:

σ𝑖=0
𝑘+12 + 3𝑖 =

k+1 3k+4

2
+ 2 + 3k + 3 =

3k2+7k+4

2
+

6k+10

2
=

3k2+13k+14

2
=

3k+7 k+2

2
=

k+1 +1 3 k+1 +4

2

Therefore, 𝑃(𝑛) holds for all 𝑛 ∈ ℕ by induction on 𝑛.


