Recursive Definitions of Sets

Q1: What is this set?

Basis Step: $6 \in S$, $15 \in S$ **Recursive Step:** If $x, y \in S$ then $x + y \in S$

Q2: Write a recursive definition for the set of powers of 3 $\{1,3,9,27,...\}$ Basis Step: **Recursive Step:**

Structural Induction

Let P(x) be "x is divisible by 3" We show P(x) holds for all $x \in S$ by structural induction. Base Cases: Inductive Hypothesis: Inductive Step: We conclude $P(x) \forall x \in S$ by the principle of induction. Basis: $6 \in S, 15 \in S$

Recursive: if $x, y \in S$ then $x + y \in S$.

Structural Induction Template

1. Define P() Show that P(x) holds for all $x \in S$. State your proof is by structural induction.

2. Base Case: Show *P*(*x*) [Do that for every base cases *x* in *S*.]

Let y be an arbitrary element of S not covered by the base cases. By the exclusion rule, y = <recursive rules>

3. Inductive Hypothesis: Suppose P(x)[Do that for every x listed as in S in the recursive rules.]

4. Inductive Step: Show *P*() holds for *y*. [You will need a separate case/step for every recursive rule.]

5. Therefore P(x) holds for all $x \in S$ by the principle of induction.

Claim for all $x, y \in \Sigma^* \operatorname{len}(x \cdot y) = \operatorname{len}(x) + \operatorname{len}(y)$.

Define Let P(y) be "len(x·y)=len(x) + len(y) for all $x \in \Sigma^*$." We prove P(y) for all $y \in \Sigma^*$ by structural induction. Base Case: Inductive Hypothesis: Inductive Step: $len(\varepsilon)=0;$

len(wa)=len(w)+1 for $w \in \Sigma^*$, $a \in \Sigma$ Σ^* :Basis: $\varepsilon \in \Sigma^*$. Recursive: If $w \in \Sigma^*$ and $a \in \Sigma$ then $wa \in \Sigma^*$