
11/7/2023

1

Functions on Strings
Since strings are defined recursively, most functions on strings are as well.
Length:
len(𝜀)=0;
len(𝑤𝑎)=len(𝑤)+1 for 𝑤 ∈ Σ∗, 𝑎 ∈ Σ

Reversal:
𝜀 = 𝜀;
𝑤𝑎 = 𝑎𝑤 for 𝑤 ∈ Σ∗, 𝑎 ∈ Σ

Concatenation
 𝑥 ⋅ 𝜀 = 𝑥 for all 𝑥 ∈ Σ∗;
𝑥 ⋅ 𝑤𝑎 = 𝑥 ⋅ 𝑤 𝑎 for 𝑤 ∈ Σ∗, 𝑎 ∈ Σ

Number of 𝑐’s in a string
𝜀 = 0
𝑤𝑐 = # 𝑤 + 1 for 𝑤 ∈ Σ∗;
𝑤𝑎 = # (𝑤) for 𝑤 ∈ Σ∗, 𝑎 ∈ Σ ∖ {𝑐}.

Define Let 𝑃(𝑦) be “for all 𝑥 ∈ Σ∗ len(x⋅y)=len(x) + len(y). “

We prove 𝑃(𝑦) for all 𝑦 ∈ Σ∗ by structural induction.
Base Case: Let 𝑥 be an arbitrary string, len(𝑥 ⋅ 𝜖)=len(x)
=len(x)+0=len(x)+len(𝜀)

Let 𝑦 be an arbitrary string not covered by the base case. By the exclusion rule, 𝑦 = 𝑤𝑎 for a string 𝑤 and
character 𝑎.
Inductive Hypothesis: Suppose 𝑃(𝑤)

Inductive Step: Let 𝑥 be an arbitrary string.
len(xy)=len(xwa) =len(xw)+1 (by definition of len)

=len(x) + len(w) + 1 (by IH)
=len(x) + len(wa) (by definition of len)

Therefore, len(xy)=len(x) + len(y), as required.
We conclude that 𝑃(𝑦) holds for all string 𝑦 by the principle of induction. Unwrapping the definition of 𝑦, we get
∀𝑥∀𝑦 ∈ Σ∗ len(xy)=len(x)+len(y), as required.

Σ∗:Basis: 𝜀 ∈ Σ∗.
Recursive: If 𝑤 ∈ Σ∗ and 𝑎 ∈ Σ then 𝑤𝑎 ∈ Σ∗

Claim for all ∗ len(x y)=len(x) + len(y).

11/7/2023

2

Structural Induction Template
1. Define 𝑃() Show that 𝑃(𝑥) holds for all 𝑥 ∈ 𝑆. State your proof is by
structural induction.
2. Base Case: Show 𝑃(𝑥)
[Do that for every base cases 𝑥 in 𝑆.]

Let 𝑦 be an arbitrary element of 𝑆 not covered by the base cases. By the
exclusion rule, 𝑦 =<recursive rules>
3. Inductive Hypothesis: Suppose 𝑃(𝑥)
[Do that for every 𝑥 listed as in 𝑆 in the recursive rules.]

4. Inductive Step: Show 𝑃() holds for 𝑦.
[You will need a separate case/step for every recursive rule.]

5. Therefore 𝑃 𝑥 holds for all 𝑥 ∈ 𝑆 by the principle of induction.

Binary Trees
Basis: A single node is a rooted binary tree.

Recursive Step: If 𝑇 and 𝑇 are rooted
binary trees with roots 𝑟 and 𝑟 , then a
tree rooted at a new node, with children
𝑟 , 𝑟 is a binary tree.

𝑇 𝑇

size()=1
size() =

size(𝑇) + size(𝑇) + 1

height() = 0
height() =

1+max (height(𝑇),height(𝑇))

𝑇 𝑇

𝑇 𝑇

