Functions on Strings

Since strings are defined recursively, most functions on strings are as well.

Length: len(ε)=0; len(wa)=len(w)+1 for $w \in \Sigma^*$, $a \in \Sigma$ Reversal: $\varepsilon^R = \varepsilon;$ $(wa)^R = aw^R$ for $w \in \Sigma^*$, $a \in \Sigma$ Concatenation $x \cdot \varepsilon = x$ for all $x \in \Sigma^*$; $x \cdot (wa) = (x \cdot w)a$ for $w \in \Sigma^*$, $a \in \Sigma$ Number of c's in a string $\#_c(\varepsilon) = 0$ $\#_c(wc) = \#_c(w) + 1$ for $w \in \Sigma^*$; $\#_c(wa) = \#_c(w)$ for $w \in \Sigma^*$, $a \in \Sigma \setminus \{c\}$.

Claim for all $x, y \in \Sigma^* \operatorname{len}(x \cdot y) = \operatorname{len}(x) + \operatorname{len}(y)$.

Define Let P(y) be "for all $x \in \Sigma^* \operatorname{len}(x \cdot y) = \operatorname{len}(x) + \operatorname{len}(y)$."

We prove P(y) for all $y \in \Sigma^*$ by structural induction.

Base Case: Let x be an arbitrary string, $len(x \cdot \epsilon) = len(x)$ = $len(x)+0=len(x)+len(\epsilon)$

Let y be an arbitrary string not covered by the base case. By the exclusion rule, y = wa for a string w and character a.

Inductive Hypothesis: Suppose P(w)

Inductive Step: Let x be an arbitrary string.

len(xy)=len(xwa) = len(xw)+1 (by definition of len)

=len(x) + len(w) + 1 (by IH)

=len(x) + len(wa) (by definition of len)

Therefore, len(xy)=len(x) + len(y), as required.

We conclude that P(y) holds for all string y by the principle of induction. Unwrapping the definition of y, we get $\forall x \forall y \in \Sigma^* \text{ len}(x) = \text{len}(x) + \text{len}(y)$, as required.

 Σ^* :Basis: $\varepsilon \in \Sigma^*$. Recursive: If $w \in \Sigma^*$ and $a \in \Sigma$ then $wa \in \Sigma^*$

Structural Induction Template

1. Define P() Show that P(x) holds for all $x \in S$. State your proof is by structural induction.

2. Base Case: Show *P*(*x*) [Do that for every base cases *x* in *S*.]

Let y be an arbitrary element of S not covered by the base cases. By the exclusion rule, y = <recursive rules>

3. Inductive Hypothesis: Suppose P(x)[Do that for every x listed as in S in the recursive rules.]

4. Inductive Step: Show *P*() holds for *y*. [You will need a separate case/step for every recursive rule.]

5. Therefore P(x) holds for all $x \in S$ by the principle of induction.

