Functions on Strings

Since strings are defined recursively, most functions on strings are as well.
Length:
len $(\varepsilon)=0$;
$\operatorname{len}(w a)=\operatorname{len}(w)+1$ for $w \in \Sigma^{*}, a \in \Sigma$
Reversal:
$\varepsilon^{R}=\varepsilon^{k ;}$
$(w a)^{R^{\prime}}=a w^{R}$ for $w \in \Sigma^{*}, a \in \Sigma$
Concatenation
$x \cdot \varepsilon=x$ for all $x \in \Sigma^{*}$;
$x \cdot(w a)=(x \cdot w) a$ for $w \in \Sigma^{*}, a \in \Sigma$
Number of c 's in a string
$\#_{c}(\varepsilon)=0$
$\#_{c} c(w c)=\#_{c}(w)+1$ for $w \in \Sigma^{*}$;
$\#_{c}^{c}(w a)=\#_{c}^{c}(w)$ for $w \in \Sigma^{*}, a \in \Sigma \backslash\{c\}$.

Claim for all $x, y \in \Sigma^{*} \operatorname{len}(x \cdot y)=\operatorname{len}(x)+\operatorname{len}(y)$.

Define Let $P(y)$ be "for all $x \in \Sigma^{*} \operatorname{len}(x \cdot y)=\operatorname{len}(\mathrm{x})+\operatorname{len}(\mathrm{y})$. "
We prove $P(y)$ for all $y \in \Sigma^{*}$ by structural induction.
Base Case: Let x be an arbitrary string, len $(x \cdot \epsilon)=\operatorname{len}(x)$ $=\operatorname{len}(x)+0=\operatorname{len}(x)+\operatorname{len}(\varepsilon)$
Let y be an arbitrary string not covered by the base case. By the exclusion rule, $y=w a$ for a string w and character a.
Inductive Hypothesis: Suppose $P(w)$
Inductive Step: Let x be an arbitrary string.
$\operatorname{len}(x y)=\operatorname{len}(x w a)=\operatorname{len}(x w)+1$ (by definition of len)

$$
\begin{aligned}
& =\operatorname{len}(\mathrm{x})+\operatorname{len}(\mathrm{w})+1(\text { by IH) } \\
& =\operatorname{len}(\mathrm{x})+\operatorname{len}(\mathrm{wa}) \text { (by definition of len) }
\end{aligned}
$$

Therefore, len $(\mathrm{xy})=\operatorname{len}(\mathrm{x})+\operatorname{len}(\mathrm{y})$, as required.
We conclude that $P(y)$ holds for all string y by the principle of induction. Unwrapping the definition of y, we get $\forall x \forall y \in \Sigma^{*}$ len $(x y)=\operatorname{len}(x)+$ len (y), as required.
Σ^{*} :Basis: $\varepsilon \in \Sigma^{*}$.
Recursive: If $w \in \Sigma^{*}$ and $a \in \Sigma$ then $w a \in \Sigma^{*}$

Structural Induction Template

1. Define $P()$ Show that $P(x)$ holds for all $x \in S$. State your proof is by structural induction.
2. Base Case: Show $P(x)$
[Do that for every base cases x in S.]
Let y be an arbitrary element of S not covered by the base cases. By the exclusion rule, $y=<$ recursive rules $>$
3. Inductive Hypothesis: Suppose $P(x)$
[Do that for every x listed as in S in the recursive rules.]
4. Inductive Step: Show $P()$ holds for y.
[You will need a separate case/step for every recursive rule.]
5. Therefore $P(x)$ holds for all $x \in S$ by the principle of induction.

Binary Trees

Basis: A single node is a rooted binary tree.

Recursive Step: If T_{1} and T_{2} are rooted binary trees with roots r_{1} and r_{2}, then a tree rooted at a new node, with children r_{1}, r_{2} is a binary tree.

