
Regular Expressions CSE 311 Autumn 2023

Lecture 20



Announcements

You’ll get an email tonight or tomorrow morning with which room to go 
to for the exam.

Please bring an ID (Husky Card or other ID) to the exam.
We’ll be checking those during the exam.

Remember you’re allowed one piece of paper of handwritten notes.
Please read details on the exams page.

https://courses.cs.washington.edu/courses/cse311/23au/exams/


Announcements

Some schedule changes:

CC20 (comes out today) is due Friday. (No CC for Wednesday’s lecture)

HW6 will come out on Wednesday Nov 15. Officially due Wed. Nov 22,
But we’ll consider submissions through Friday Nov 24 as on time; one late day to 
submit Saturday Nov 25, two for Sunday, three for Monday.

Staff are taking Thanksgiving off. We won’t be there to help on Ed; if you need a 
late day, we don’t want that to ruin Thanksgiving.

HW7 will be released Wed Nov 22. We think you can reasonably start it on Monday 
Nov 27 and be fine. But if you’d prefer to work (say, you have a long plane flight) 
it’ll be out. Due Friday Dec 1.



Structural Induction on Binary Trees (cont.)

Let 𝑃 𝑇 be “size(𝑇) ≤ 2ℎ𝑒𝑖𝑔ℎ𝑡 𝑇 +1 − 1“. We show 𝑃(𝑇) for all binary trees 𝑇 by structural 
induction.

𝑇 = . 

height(𝑇)=1 +max{ℎ𝑒𝑖𝑔ℎ𝑡 𝐿 , ℎ𝑒𝑖𝑔ℎ𝑡 𝑅 }

size(𝑇)= 1 +size(𝐿)+size(𝑅)

size(𝑇)=1+size(𝐿)+size 𝑅 ≤ 1 + 2ℎ𝑒𝑖𝑔ℎ𝑡 𝐿 +1 − 1 +2ℎ𝑒𝑖𝑔ℎ𝑡 𝑅 +1 −1 (by IH)

≤ 2ℎ𝑒𝑖𝑔ℎ𝑡 𝐿 +1 +2ℎ𝑒𝑖𝑔ℎ𝑡 𝑅 +1 −1 (cancel 1’s)

≤ 2ℎ𝑒𝑖𝑔ℎ𝑡(𝑇) + 2ℎ𝑒𝑖𝑔ℎ𝑡(𝑇) − 1 = 2ℎ𝑒𝑖𝑔ℎ𝑡 𝑇 +1 − 1 (𝑇 taller than subtrees)

So 𝑃(𝑇) holds, and we have 𝑃(𝑇) for all binary trees 𝑇 by the principle of induction.

𝐿 𝑅



Structural Induction on Trees

The common pattern for the inductive step will be something like:

Use the recursive definitions to talk about the sub-trees instead of the 
full tree.

Use the IH to talk about the target (the conclusion or the RHS of an 
equation) holding on the sub-trees.

Recombine the conclude the target for the full tree.



What does the inductive step look like?

Here’s a recursively-defined set:

Basis: 0 ∈ 𝑇 and 5 ∈ 𝑇

Recursive: If 𝑥, 𝑦 ∈ 𝑇 then 𝑥 + 𝑦 ∈ 𝑇 and 𝑥 − 𝑦 ∈ 𝑇.

Let 𝑃(𝑥) be “5|𝑥”

What does the inductive step look like?

Well there’s two recursive rules, so we have two things to show



Just the IS (you still need the other steps)

Let 𝑧 be an arbitrary element of 𝑇 not covered by the base cases. By the exclusion 
rule, 𝑇 = 𝑥 + 𝑦 or 𝑇 = 𝑥 − 𝑦 for some 𝑥, 𝑦 ∈ 𝑇.

Inductive hypothesis: Suppose 𝑃(𝑥) and 𝑃(𝑦) hold

Inductive Step

Case 1: 𝑧 = 𝑥 + 𝑦

By IH 5|𝑥 and 5|𝑦 so 5𝑎 = 𝑥 and 5𝑏 = 𝑦 for integers 𝑎, 𝑏.

Adding, we get 𝑥 + 𝑦 = 5𝑎 + 5𝑏 = 5(𝑎 + 𝑏). Since 𝑎, 𝑏 are integers, so is 𝑎 + 𝑏, and 
𝑃(𝑥 + 𝑦) holds.

Case 2: 𝑧 = 𝑥 − 𝑦

By IH 5|𝑥 and 5|𝑦 so 5𝑎 = 𝑥 and 5𝑏 = 𝑦 for integers 𝑎, 𝑏.

Subtracting, we get 𝑥 − 𝑦 = 5𝑎 − 5𝑏 = 5(𝑎 − 𝑏). Since 𝑎, 𝑏 are integers, so is 𝑎 − 𝑏,
and 𝑃(𝑥 − 𝑦) holds.



If you don’t have a recursively-defined set

You won’t do structural induction.

You can do weak or strong induction though.

For example, Let 𝑃 𝑛 be “for all elements of 𝑆 of “size” 𝑛 <something> 
is true”

To prove “for all 𝑥 ∈ 𝑆 of size 𝑛…” you need to start with “let 𝑥 be an 
arbitrary element of size 𝑘 + 1 in your IS.

You CAN’T start with size 𝑘 and “build up” to an arbitrary element of 
size 𝑘 + 1 it isn’t arbitrary.



Part 3 of the course!



Course Outline

Symbolic Logic (training wheels) 
Just make arguments in mechanical ways.

Set Theory/Number Theory (bike in your backyard)

Models of computation (biking in your neighborhood)
Still make and communicate rigorous arguments

But now with objects you haven’t used before.

-A first taste of how we can argue rigorously about computers.

This week: regular expressions and context free grammars – understand these 
“simpler computers”

Soon: what these simple computers can do
Then: what simple computers can’t do.

Last week: A problem our computers cannot solve.



The next two weeks

A big of a grab-bag—topics that don’t build on each other much. 

Some stuff that’s has applications in future classes.

This week: some theory that’s useful for computer scientists
The topics for this weeks are key parts of building compilers, we’ll use that as 
motivation—no details on compilers, but hopefully enough that you’ll find it 
interesting.

They ALSO can be thought of as “underpowered computers.” 

We’ll use them to build up to proving what computers can and can’t do. 

Next week: some mathematical tools that are useful in the future.



Regular Expressions

I have a giant text document. And I want to find all the email addresses 
inside. What does an email address look like?

[some letters and numbers] @ [more letters] . [com, net, or edu]

We want to ctrl-f for a pattern of strings rather than a single string



Languages

A set of strings is called a language.

Σ∗ is a language

“the set of all binary strings of even length” is a language.

“the set of all palindromes” is a language.

“the set of all English words” is a language.

“the set of all strings matching a given pattern” is a language.



Regular Expressions

Basis:
𝜀 is a regular expression. The empty string itself matches the pattern (and nothing 
else does).

∅ is a regular expression. No strings match this pattern. 

𝑎 is a regular expression, for any 𝑎 ∈ Σ (i.e. any character). The character itself 
matching this pattern. 

Recursive
If 𝐴, 𝐵 are regular expressions then (𝐴 ∪ 𝐵) is a regular expression

matched by any string that matches 𝐴 or that matches 𝐵 [or both]).

If 𝐴, 𝐵 are regular expressions then 𝐴𝐵 is a regular expression.

matched by any string 𝑥 such that 𝑥 = 𝑦𝑧, 𝑦 matches 𝐴 and 𝑧 matches 𝐵.

If 𝐴 is a regular expression, then 𝐴∗ is a regular expression.

matched by any string that can be divided into 0 or more strings that match 𝐴.



Regular Expressions

(𝑎 ∪ 𝑏𝑐)

0 0 ∪ 1 1

0∗

0 ∪ 1 ∗



Regular Expressions

(𝑎 ∪ 𝑏𝑐)

Corresponds to {𝑎, 𝑏𝑐}

0 0 ∪ 1 1

Corresponds to {001, 011}

all length three strings that start with a 0 and end in a 1.

0∗

Corresponds to {𝜀, 0,00,000,0000,… }

0 ∪ 1 ∗

Corresponds to the set of all binary strings.



More Examples

0∗1∗ ∗

0∗1∗

0 ∪ 1 ∗ 00 ∪ 11 ∗ 0 ∪ 1 ∗

00 ∪ 11 ∗



More Examples

0∗1∗ ∗

All binary strings

0∗1∗

All binary strings with any 0’s coming before all 1’s

0 ∪ 1 ∗ 00 ∪ 11 ∗ 0 ∪ 1 ∗

This is all binary strings again. Not a “good” representation, but valid.

00 ∪ 11 ∗

All binary strings where 0s and 1s come in pairs



More Practice

You can also go the other way

Write a regular expression for “the set of all binary strings of odd 
length”

Write a regular expression for “the set of all binary strings with at most 
two ones”

Write a regular expression for “strings that don’t contain 00”



More Practice

You can also go the other way

Write a regular expression for “the set of all binary strings of odd 
length”

0 ∪ 1 00 ∪ 01 ∪ 10 ∪ 11 ∗

Write a regular expression for “the set of all binary strings with at most 
two ones”

0∗ 1 ∪ 𝜖 0∗ 1 ∪ 𝜖 0∗

Write a regular expression for “strings that don’t contain 00”

01 ∪ 1 ∗(0 ∪ 𝜖) (key idea: all 0s followed by 1 or end of the string)



Practical Advice

Check 𝜀 and 1 character strings to make sure they’re excluded or 
included (easy to miss those edge cases). 

If you can break into pieces, that usually helps.

“nots” are hard (there’s no “not” in standard regular expressions)
But you can negate things, usually by negating at a low-level. E.g. to have binary 
strings without 00, your building blocks are 1’s and 0’s followed by a 1

01 ∪ 1 ∗(0 ∪ 𝜀) then make adjustments for edge cases (like ending in 0)

Remember ∗ allows for 0 copies! To say “at least one copy” use 𝐴𝐴∗.



Regular Expressions In Practice
EXTREMELY useful. Used to define valid “tokens” (like legal variable names or all known keywords when writing 
compilers/languages)

Used in grep to actually search through documents.
Pattern p = Pattern.compile("a*b"); 

Matcher m = p.matcher("aaaaab"); 

boolean b = m.matches();

^ start of string     

$ end of string

[01] a 0 or a 1     

[0-9] any single digit       

\. period    \, comma  \- minus

. any single character

ab         a followed by b           (AB)

(a|b) a or b (A  B)

a? zero or one of a          (A  )

a* zero or more of a          A*

a+ one or more of a          AA* 

e.g.   ^[\-+]?[0-9]*(\.|\,)?[0-9]+$

General form of decimal number  e.g.  9.12  or -9,8 (Europe)



Regular Expressions In Practice

When you only have ASCII characters (say in a programming language)

| usually takes the place of ∪

? (and perhaps creative rewriting) take the place of 𝜀.

E.g. 0 ∪ 𝜀 1 ∪ 10 ∗ is 0?(1|10)*



A Final Vocabulary Note

Not everything can be represented as a regular expression.
E.g. “the set of all palindromes” is not the language of any regular expression.

Some programming languages define features in their “regexes” that 
can’t be represented by our definition of regular expressions. 
Things like “match this pattern, then have exactly that substring appear later.

So before you say “ah, you can’t do that with regular expressions, I 
learned it in 311!” you should make sure you know whether your 
language is calling a more powerful object “regular expressions”.

But the more “fancy features” beyond regular expressions you use, the 
slower the checking algorithms run, (and the harder it is to force the 
expressions to fit into the framework) so this is still very useful theory.



A bit more on induction

If there’s time



CAUTION

When you don’t have a recursive definition, you can’t use structural 
induction! But you can do an inductive proof that looks like structural 
induction.

The way to do the proof is to define a predicate with a for-all in it

Let 𝑃(𝑛) be “for all <things> of <size> 𝑛, the claim holds”

Then in doing the inductive step you start with an arbitrary thing of size 
𝑘 + 1. Start with the BIG thing, then find the small thing inside to apply 
the IH.



Induction: Hats!

You have 𝑛 people in a line (𝑛 ≥ 2). Each of them wears either a purple 
hat or a gold hat. The person at the front of the line wears a purple hat. 
The person at the back of the line wears a gold hat. 

Show that for every arrangement of the line satisfying the rule above, 
there is a person with a purple hat next to someone with a gold hat. 

Yes this is kinda obvious. I promise this is good induction practice.

Yes you could argue this by contradiction. I promise this is good 
induction practice.



Induction: Hats!

Define 𝑃(𝑛) to be “in every line of 𝑛 people with gold and purple hats, with a 
purple hat at one end and a gold hat at the other, there is a person with a 
purple hat next to someone with a gold hat”

We show 𝑃(𝑛) for all integers 𝑛 ≥ 2 by induction on 𝑛.

Base Case: 𝑛 = 2

Inductive Hypothesis:

Inductive Step: 

By the principle of induction, we have 𝑃(𝑛) for all 𝑛 ≥ 2



Induction: Hats!

Define 𝑃(𝑛) to be “in every line of 𝑛 people with gold and purple hats, with a purple hat at one end 
and a gold hat at the other, there is a person with a purple hat next to someone with a gold hat”

We show 𝑃(𝑛) for all integers 𝑛 ≥ 2 by induction on 𝑛.

Base Case: 𝑛 = 2 The line must be just a person with a purple hat and a person with a gold hat, who 
are next to each other. 

Inductive Hypothesis: Suppose 𝑃(𝑘) holds for an arbitrary 𝑘 ≥ 2.

Inductive Step: Consider an arbitrary line with 𝑘 + 1 people in purple and gold hats, with a gold hat at 
one end and a purple hat at the other.

Target: there is someone in a purple hat next to someone in a gold hat.

By the principle of induction, we have 𝑃(𝑛) for all 𝑛 ≥ 2

We start with an arbitrary 

BIG thing—start with an 

arbitrary line of size 𝑘 + 1.



Induction: Hats!

Define 𝑃(𝑛) to be “in every line of 𝑛 people with gold and purple hats, with a purple hat at one end 
and a gold hat at the other, there is a person with a purple hat next to someone with a gold hat” 

We show 𝑃(𝑛) for all integers 𝑛 ≥ 2 by induction on 𝑛.

Base Case: 𝑛 = 2 The line must be just a person with a purple hat and a person with a gold hat, who 
are next to each other. 

Inductive Hypothesis: Suppose 𝑃(𝑘) holds for an arbitrary 𝑘 ≥ 2.

Inductive Step: Consider an arbitrary line with 𝑘 + 1 people in purple and gold hats, with a gold hat at 
one end and a purple hat at the other.

Case 1: There is someone with a purple hat next to the person in the gold hat at one end. Then those 
people are the required adjacent opposite hats.

Case 2:. There is a person with a gold hat next to the person in the gold hat at the end. Then the line 
from the second person to the end is length 𝑘, has a gold hat at one end and a purple hat at the 
other. Applying the inductive hypothesis, there is an adjacent, opposite-hat wearing pair.

In either case we have 𝑃(𝑘 + 1).

By the principle of induction, we have 𝑃(𝑛) for all 𝑛 ≥ 2


