
CFGs
Relations

CSE 311 Autumn 2023

Lecture 22

[Audience looks around] “What just happened?” “There must be some context we’re missing.”

xkcd.com/1090

Announcements

Don’t forget about HW6 (due Wednesday, but remember late days are
different; see the homework pdf).
Today, CSE 403 6PM Jacob will have “how to get started” OH.

CC22 out tonight

Slides for Wednesday, CC23 will be available tomorrow morning; if
you’re traveling early, you can work ahead.

OH are changed this week (none Thurs/Fri; some Wed switched to
zoom)

HW7 will be available Wednesday if you want to work ahead.

Context Free Grammars

Examples

𝑆 → 0𝑆0 1𝑆1 0|1|𝜀

The set of all binary palindromes

𝑆 → 0𝑆|𝑆1|𝜀

The set of all strings with any 0’s coming before any 1’s (i.e. 0∗1∗)

𝑆 → 𝑆 𝑆𝑆 𝜀

Balanced parentheses

𝑆 → 𝐴𝐵

𝐴 → 0𝐴1|𝜀

𝐵 → 1𝐵0|𝜀 {0𝑗1𝑗+𝑘0𝑘: 𝑗, 𝑘 ≥ 0}

Multiple ways of generating strings

Generate 2 + 3 ∗ 4in two different ways

𝐸 ⇒ 𝐸 + 𝐸 ⇒ 𝐸 + 𝐸 ∗ 𝐸 ⇒ 2 + 𝐸 ∗ 𝐸 ⇒ 2 + 3 ∗ 𝐸 ⇒ 2 + 3 ∗ 4

𝐸 ⇒ 𝐸 ∗ 𝐸 ⇒ 𝐸 + 𝐸 ∗ 𝐸 ⇒ 2 + 𝐸 ∗ 𝐸 ⇒ 2 + 3 ∗ 𝐸 ⇒ 2 + 3 ∗ 4

What did we mean by these being different? They represent different
meanings mathematically.

One says “you’re adding together two numbers: 2 and (whatever 3*4 is)”

The other says “you’re multiplying two numbers: (whatever 2+3 is) and 4”

Those have different meanings!

Parse Trees—remember where parentheses go

Suppose a context free grammar 𝐺 generates a string 𝑥

A parse tree of 𝑥 for 𝐺 has
Rooted at 𝑆 (start symbol)

Children of every 𝐴 node are labeled with the characters of 𝑤 for some 𝐴 → 𝑤

Reading the leaves from left to right gives 𝑥.

𝑆 → 0𝑆0 1𝑆1 0 1 𝜀

S

0 0S

S1 1

1

Back to the arithmetic

𝐸 → 𝐸 + 𝐸 𝐸 ∗ 𝐸 𝐸 𝑥 𝑦 𝑧 0 1 2 3 4 5 6 7 8|9

Two parse trees for 2 + 3 ∗ 4

E

E E+

∗E E2

3 4

∗

+E E

2

E

E E

3

4

Why do we care about parsing?

2 + 3 ∗ 4 can only mean one thing!

If I write these symbols in a program, we need to make sure we know
which one to do.

The first grammar we saw was “ambiguous” it allows the same string to
“mean” two different things.

Sometimes you can fix that!

How do we encode order of operations

If we want to keep “in order” we want there to be only one
possible parse tree.

Differentiate between “things to add” and “things to multiply”

Only introduce a * sign after you’ve eliminated the possibility of
introducing another + sign in that area.

𝐸 → 𝑇|𝐸 + 𝑇

𝑇 → 𝐹|𝑇 ∗ 𝐹

𝐹 → 𝐸 |𝑁

𝑁 → 𝑥 𝑦 𝑧 0 1 2 3 4 5 6 7|8|9

E

E T+

∗T F

2

F

N

T

3

F

N 4

N

How do Computer Scientists use CFGs?

Most programming languages define valid programs as “strings that fit a CFG”
That makes sure Java breaks down math expressions correctly! And also code
like this:

if(i>0)

if(j>0)

System.out.println(“hi”);

else(k>1)

System.out.println(“bye”);

if(i>0)

if(j>0)

System.out.println(“hi”);

else(k>1)

System.out.println(“bye”);

The else could be attached to either “if”! Java needs a rule to decide which it goes with.

Java’s convention makes the one on the left the intuitive whitespace.

(You as a programmer should put braces so the humans reading your code don’t have

to wonder!)

CFGs in practice

Used to define programming languages.

Often written in Backus-Naur Form – just different notation

Variables are <names-in-brackets> (or sometimes without)

like <if-then-else-statement>, <condition>, <identifier>

→ is replaced with ∷= or ∶

BNF for C (no <...> and uses : instead of ::=)

Some fun CFG applications

If we have time

Parse Trees

Remember diagramming sentences in middle school?

<sentence>::=<noun phrase><verb phrase>

<noun phrase>::=<determiner><adjective><noun>

<verb phrase>::=<verb><adverb>|<verb><object>

<object>::=<noun phrase>

Parse Trees

<sentence>::=<noun phrase><verb phrase>

<noun phrase>::=<determiner><adjective><noun>

<verb phrase>::=<verb><adverb>|<verb><object>

<object>::=<noun phrase>

The old man the boat.

The old man the boat

By Jochen Burghardt - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=92742400

English is ambiguous

(Most of ‘standard’) English can be represented as a context free
grammar.
It’s not perfect (ask Robbie details later).

The grammar is ambiguous! That is, there are sentences which have
multiple valid parsings (multiple meanings).

Can you find multiple meanings of this sentence:
“Place these 3 exercise balls on the mat at the top of the hill.”

See this video

https://www.youtube.com/watch?v=gznDGyNiDlg

The Important Takeaways

Power of Context Free Languages

There are languages CFGs can express that regular expressions can’t
e.g. palindromes

What about vice versa – is there a language that a regular expression
can represent that a CFG can’t?
No!

Are there languages even CFGs cannot represent?
Yes!

{0𝑘1𝑗2𝑘3𝑗|𝑗, 𝑘 ≥ 0} cannot be written with a context free grammar.

Takeaways

CFGs and regular expressions gave us ways of succinctly representing
sets of strings
Regular expressions super useful for representing things you need to search for

CFGs represent complicated languages like “java code with valid syntax”

This week, two more tools for our toolbox (relations, graphs)

After Thanksgiving, (mathematical representations of) Tiny computers!
And how they relate to regular expressions and CFGs.

Relations and Graphs

Relations

Wait what?

≤ is a relation on ℤ.

“3 ≤ 4“ is a way of saying “3 relates to 4” (for the ≤ relation)

(3,4) is an element of the set that defines the relation.

A (binary) relation from 𝐴 to 𝑩 is a subset of 𝑨 × 𝑩
A (binary) relation on 𝑨 is a subset of 𝑨 × 𝑨

Relations

Relations, Examples

It turns out, they’ve been here the whole time

< on ℝ is a relation

I.e. { 𝑥, 𝑦 ∶ 𝑥 < 𝑦 and 𝑥, 𝑦 ∈ ℝ}.

= on Σ∗ is a relation

i.e. { 𝑥, 𝑦 ∶ 𝑥 = 𝑦 and 𝑥, 𝑦 ∈ Σ∗}

For your favorite function 𝑓, you can define a relation from its domain to
its co-domain

i.e. { 𝑥, 𝑦 ∶ 𝑓 𝑥 = 𝑦}

“𝑥 when squared gives 𝑦” is a relation

i.e. { 𝑥, 𝑦 : 𝑥2 = 𝑦, 𝑥, 𝑦 ∈ ℝ}

Relations, Examples

Fix a universal set 𝒰.

⊆ is a relation. What’s it on?

𝒫(𝒰)
The set of all subsets of 𝒰

More Relations

𝑅1 = { 𝑎, 1 , 𝑎, 2 , 𝑏, 1 , 𝑏, 3 , 𝑐, 3 }

Is a relation (you can define one just by listing what relates to what)

Equivalence mod 5 is a relation.

{ 𝑥, 𝑦 ∶ 𝑥 ≡ 𝑦 𝑚𝑜𝑑 5 }

We’ll also say “x relates to y if and only if they’re congruent mod 5”

Properties of relations

What do we do with relations? Usually we prove properties about them.

Symmetry

A binary relation 𝑅 on a set 𝑺 is “symmetric” iff

for all 𝒂, 𝒃 ∈ 𝑺, [𝒂, 𝒃 ∈ 𝑹 → 𝐛, 𝐚 ∈ 𝑹]

Transitivity

A binary relation 𝑅 on a set 𝑺 is “transitive” iff

for all 𝒂, 𝒃, 𝒄 ∈ 𝑺, [𝒂, 𝒃 ∈ 𝑹 ∧ 𝒃, 𝒄 ∈ 𝑹 → 𝐚, 𝐜 ∈ 𝑹]

= on Σ∗ is symmetric, for all 𝑎, 𝑏 ∈ Σ∗ if 𝑎 = 𝑏 then 𝑏 = 𝑎.
⊆ is not symmetric on 𝒫(𝒰) – 1,2,3 ⊆ {1,2,3,4} but 1,2,3,4 ⊈ {1,2,3}

= on Σ∗ is transitive, for all 𝑎, 𝑏, 𝑐 ∈ Σ∗ if 𝑎 = 𝑏 and 𝑏 = c then 𝑎 = 𝑐.
⊆ is transitive on 𝒫(𝒰) – for any sets 𝐴, 𝐵, 𝐶 if 𝐴 ⊆ 𝐵 and 𝐵 ⊆ 𝐶 then 𝐴 ⊆ 𝐶.

∈ is not a transitive relation – 1 ∈ {1,2,3}, 1,2,3 ∈ 𝒫(1,2,3) but 1 ∉ 𝒫 1,2,3 .

Warm up

Show that 𝑎 ≡ 𝑏 𝑚𝑜𝑑 𝑛 if and only if 𝑏 ≡ 𝑎(𝑚𝑜𝑑 𝑛)

𝑎 ≡ 𝑏 𝑚𝑜𝑑 𝑛 ↔ 𝑛|(𝑏 − 𝑎) ↔ 𝑛𝑘 = 𝑏 − 𝑎 for 𝑘 ∈ ℤ ↔

𝑛(−𝑘) = 𝑎 − 𝑏(for − k ∈ ℤ) ↔ 𝑛| 𝑎 − 𝑏 ↔ 𝑏 ≡ 𝑎(𝑚𝑜𝑑 𝑛)

Show that 𝑎%𝑛=(𝑎 − 𝑛)%𝑛 Where 𝑏%𝑐 is the unique 𝑟 such that 𝑏 =
𝑘𝑐 + 𝑟 for some integer 𝑘.

By definition of %, 𝑎 = 𝑞𝑛 + (𝑎%𝑛) for some integer 𝑞. Subtracting 𝑛,

𝑎 − 𝑛 = 𝑞 − 1 𝑛 + (𝑎%𝑛). Observe that 𝑞 − 1 is an integer, and that
this is the form of the division theorem for 𝑎 − 𝑛 %𝑛. Since the division
theorem guarantees a unique integer, 𝑎 − 𝑛 %𝑛 = (𝑎%𝑛)

This was a proof that the relation { 𝒂, 𝒃 ∶ 𝒂 ≡ 𝒃 𝒎𝒐𝒅 𝒏 } is symmetric!

It was actually overkill to show if and only if. Showing just one direction

turns out to be enough!

What about transitivity?

You did this as a homework problem!

Divides is a transitive relation!

If 𝑝|𝑞 and 𝑞|𝑟 then 𝑝|𝑟.

More Properties of relations

What do we do with relations? Usually we prove properties about them.

Antisymmetry

A binary relation 𝑅 on a set 𝑺 is “antisymmetric” iff

for all 𝒂, 𝒃 ∈ 𝑺, [𝒂, 𝒃 ∈ 𝑹 ∧ 𝒂 ≠ 𝒃 → 𝐛, 𝐚 ∉ 𝑹]

Reflexivity

A binary relation 𝑅 on a set 𝑺 is “reflexive” iff

for all 𝒂 ∈ 𝑺, [𝒂, 𝒂 ∈ 𝑹]

≤ is antisymmetric on ℤ

≤≤ is reflexive on ℤ

You’ve proven antisymmetry too!

You showed | is antisymmetric on ℤ+ in section 5.

for all 𝑎, 𝑏 ∈ 𝑆, [𝑎, 𝑏 ∈ 𝑅 ∧ b, a ∈ 𝑅 → 𝑎 = 𝑏] is equivalent to the
definition in the box above

The box version is easier to understand, the other version is usually
easier to prove.

Antisymmetry

A binary relation 𝑅 on a set 𝑺 is “antisymmetric” iff

for all 𝒂, 𝒃 ∈ 𝑺, [𝒂, 𝒃 ∈ 𝑹 ∧ 𝒂 ≠ 𝒃 → 𝐛, 𝐚 ∉ 𝑹]

Try a few of your own

Decide whether each of these relations are

Reflexive, symmetric, antisymmetric, and
transitive.

⊆ on 𝒫(𝒰)

≥ on ℤ

> on ℝ

| on ℤ+

| on ℤ

≡ (𝑚𝑜𝑑 3) on ℤ

Symmetry: for all 𝒂, 𝒃 ∈ 𝑺, [𝒂, 𝒃 ∈ 𝑹 → 𝐛, 𝐚 ∈ 𝑹]

Transitivity: for all 𝒂, 𝒃, 𝒄 ∈ 𝑺, [𝒂, 𝒃 ∈ 𝑹 ∧ 𝒃, 𝒄 ∈ 𝑹 → 𝐚, 𝐜 ∈ 𝑹]

Antisymmetry: for all 𝒂, 𝒃 ∈ 𝑺, [𝒂, 𝒃 ∈ 𝑹 ∧ 𝒂 ≠ 𝒃 → 𝐛, 𝐚 ∉ 𝑹]

Reflexivity: for all 𝒂 ∈ 𝑺, [𝒂, 𝒂 ∈ 𝑹]

Try a few of your own

Decide whether each of these relations are

Reflexive, symmetric, antisymmetric, and
transitive.

⊆ on 𝒫 𝒰 reflexive, antisymmetric, transitive

≥ on ℤ reflexive, antisymmetric, transitive

> on ℝ antisymmetric, transitive

| on ℤ+ reflexive, antisymmetric, transitive

| on ℤ reflexive, transitive

≡ (𝑚𝑜𝑑 3) on ℤ reflexive, symmetric, transitive

Symmetry: for all 𝒂, 𝒃 ∈ 𝑺, [𝒂, 𝒃 ∈ 𝑹 → 𝐛, 𝐚 ∈ 𝑹]

Transitivity: for all 𝒂, 𝒃, 𝒄 ∈ 𝑺,

[𝒂, 𝒃 ∈ 𝑹 ∧ 𝒃, 𝒄 ∈ 𝑹 → 𝐚, 𝐜 ∈ 𝑹]

Antisymmetry: for all 𝒂, 𝒃 ∈ 𝑺, [𝒂, 𝒃 ∈ 𝑹 ∧ 𝒂 ≠ 𝒃 → 𝐛, 𝐚 ∉ 𝑹]

Reflexivity: for all 𝒂 ∈ 𝑺, [𝒂, 𝒂 ∈ 𝑹]

