Try a few of your own

Decide whether each of these relations are
Reflexive, symmetric, antisymmetric, and
transitive.
\subseteq on $\mathcal{P}(\mathcal{U})$
\geq on \mathbb{Z}
$>$ on \mathbb{R}
| on \mathbb{Z}^{+}
| on \mathbb{Z}
$\equiv(\bmod 3)$ on \mathbb{Z}

Symmetry: for all $a, b \in S,[(a, b) \in R \rightarrow(b, a) \in R]$
Antisymmetry: for all $a, b \in S,[(a, b) \in R \wedge a \neq b \rightarrow(b, a) \notin R]$

Transitivity: for all $a, b, c \in S,[(a, b) \in R \wedge(b, c) \in R \rightarrow(a, c) \in R]$

Two Prototype Relations

A lot of fundamental relations follow one of two prototypes:
Equivalence Relation
A relation that is reflexive, symmetric, and transitive is called an "equivalence relation"

Partial Order Relation

A relation that is reflexive, antisymmetric, and transitive is called a "partial order"

Directed Graphs

$$
G=(V, E)
$$

V is a set of vertices (an underlying set of elements)
E is a set of edges (ordered pairs of vertices; i.e. connections from one to the next).

Path $v_{0}, v_{1}, \ldots, v_{k}$ such that $\left(v_{i}, v_{i+1}\right) \in E$ Simple Path: path with all v_{i} distinct Cycle: path with $v_{0}=v_{k}($ and $k>0)$ Simple Cycle: simple path plus edge $\left(v_{k}, v_{0}\right)$ with $k>0$

Relations and Graphs

Describe how each property will show up in the graph of a relation.
Reflexive

Symmetric

Antisymmetric

Transitive

