
Relations And Graphs CSE 311 Autumn 2023

Lecture 23



Announcements

Midterm grades are out. Solutions are on Ed.

There’s an Ed Post with how to interpret grades so far.

Remember you can schedule time to meet with TAs 1:1
Can walkthrough your exam with you/give you tips on studying.

Discuss previous concepts before the final exam.

Can also ask questions like these in regular office hours.

Can meet with Robbie 1:1 as well (see the Ed post)
Those topics, but also discussions on grades.

Coming soon: an extra video with common midterm misconceptions.



Relations

Wait what?

≤ is a relation on ℤ.

“3 ≤ 4“ is a way of saying “3 relates to 4” (for the ≤ relation)

(3,4) is an element of the set that defines the relation. 

A (binary) relation from 𝐴 to 𝑩 is a subset of 𝑨 × 𝑩
A (binary) relation on 𝑨 is a subset of 𝑨 × 𝑨

Relations



Properties of relations

What do we do with relations? Usually we prove properties about them.

Symmetry

A binary relation 𝑅 on a set 𝑺 is “symmetric” iff

for all 𝒂, 𝒃 ∈ 𝑺, [ 𝒂, 𝒃 ∈ 𝑹 → 𝐛, 𝐚 ∈ 𝑹]

Transitivity

A binary relation 𝑅 on a set 𝑺 is “transitive” iff

for all 𝒂, 𝒃, 𝒄 ∈ 𝑺, [ 𝒂, 𝒃 ∈ 𝑹 ∧ 𝒃, 𝒄 ∈ 𝑹 → 𝐚, 𝐜 ∈ 𝑹]

= on Σ∗ is symmetric, for all 𝑎, 𝑏 ∈ Σ∗ if 𝑎 = 𝑏 then 𝑏 = 𝑎.
⊆ is not symmetric on 𝒫(𝒰) – 1,2,3 ⊆ {1,2,3,4} but 1,2,3,4 ⊈ {1,2,3}

= on Σ∗ is transitive, for all 𝑎, 𝑏, 𝑐 ∈ Σ∗ if 𝑎 = 𝑏 and 𝑏 = c then 𝑎 = 𝑐.
⊆ is transitive on 𝒫(𝒰) – for any sets 𝐴, 𝐵, 𝐶 if 𝐴 ⊆ 𝐵 and 𝐵 ⊆ 𝐶 then 𝐴 ⊆ 𝐶.

∈ is not a transitive relation – 1 ∈ {1,2,3}, 1,2,3 ∈ 𝒫( 1,2,3 ) but 1 ∉ 𝒫 1,2,3 .



More Properties of relations

What do we do with relations? Usually we prove properties about them.

Antisymmetry

A binary relation 𝑅 on a set 𝑺 is “antisymmetric” iff

for all 𝒂, 𝒃 ∈ 𝑺, [ 𝒂, 𝒃 ∈ 𝑹 ∧ 𝒂 ≠ 𝒃 → 𝐛, 𝐚 ∉ 𝑹]

Reflexivity

A binary relation 𝑅 on a set 𝑺 is “reflexive” iff

for all 𝒂 ∈ 𝑺, [ 𝒂, 𝒂 ∈ 𝑹]

≤ is antisymmetric on ℤ

≤≤ is reflexive on ℤ



You’ve proven antisymmetry too!

You showed | is antisymmetric on ℤ+ in section 5.

for all 𝑎, 𝑏 ∈ 𝑆, [ 𝑎, 𝑏 ∈ 𝑅 ∧ b, a ∈ 𝑅 → 𝑎 = 𝑏] is equivalent to the 
definition in the box above 

The box version is easier to understand, the other version is usually 
easier to prove.

Antisymmetry

A binary relation 𝑅 on a set 𝑺 is “antisymmetric” iff

for all 𝒂, 𝒃 ∈ 𝑺, [ 𝒂, 𝒃 ∈ 𝑹 ∧ 𝒂 ≠ 𝒃 → 𝐛, 𝐚 ∉ 𝑹]



Try a few of your own

Decide whether each of these relations are 

Reflexive, symmetric, antisymmetric, and 
transitive.

⊆ on 𝒫(𝒰)

≥ on ℤ

> on ℝ

| on ℤ+

| on ℤ

≡ (𝑚𝑜𝑑 3) on ℤ

Symmetry: for all 𝒂, 𝒃 ∈ 𝑺, [ 𝒂, 𝒃 ∈ 𝑹 → 𝐛, 𝐚 ∈ 𝑹]

Transitivity: for all 𝒂, 𝒃, 𝒄 ∈ 𝑺, [ 𝒂, 𝒃 ∈ 𝑹 ∧ 𝒃, 𝒄 ∈ 𝑹 → 𝐚, 𝐜 ∈ 𝑹]

Antisymmetry: for all 𝒂, 𝒃 ∈ 𝑺, [ 𝒂, 𝒃 ∈ 𝑹 ∧ 𝒂 ≠ 𝒃 → 𝐛, 𝐚 ∉ 𝑹]

Reflexivity: for all 𝒂 ∈ 𝑺, [ 𝒂, 𝒂 ∈ 𝑹]



Try a few of your own

Decide whether each of these relations are 

Reflexive, symmetric, antisymmetric, and 
transitive.

⊆ on 𝒫 𝒰 reflexive, antisymmetric, transitive

≥ on ℤ reflexive, antisymmetric, transitive

> on ℝ antisymmetric, transitive

| on ℤ+ reflexive, antisymmetric, transitive

| on ℤ reflexive, transitive

≡ (𝑚𝑜𝑑 3) on ℤ reflexive, symmetric, transitive

Symmetry: for all 𝒂, 𝒃 ∈ 𝑺, [ 𝒂, 𝒃 ∈ 𝑹 → 𝐛, 𝐚 ∈ 𝑹]

Transitivity: for all 𝒂, 𝒃, 𝒄 ∈ 𝑺, 

[ 𝒂, 𝒃 ∈ 𝑹 ∧ 𝒃, 𝒄 ∈ 𝑹 → 𝐚, 𝐜 ∈ 𝑹]

Antisymmetry: for all 𝒂, 𝒃 ∈ 𝑺, [ 𝒂, 𝒃 ∈ 𝑹 ∧ 𝒂 ≠ 𝒃 → 𝐛, 𝐚 ∉ 𝑹]

Reflexivity: for all 𝒂 ∈ 𝑺, [ 𝒂, 𝒂 ∈ 𝑹]



How Do symmetry and antisymmetry relate?

There are relations that are neither symmetric nor antisymmetric.

For example 𝑅 = { 1,2 , 2,1 , 1,3 }

1,2 , (2,1) say you can’t be antisymmetric. 

(1,3) [without (3,1)] says you can’t be symmetric.

But you can only be both if the implications are vacuous.

A relation like { 1,1 , 2,2 , 3,3 } is vacuously symmetric AND 
antisymmetric. Such relations are rarely seen though. Once you have 
𝑥, 𝑦 where x ≠ 𝑦 and 𝑥, 𝑦 ∈ R the relation cannot be both.



Two Prototype Relations

A lot of fundamental relations follow one of two prototypes:

A relation that is reflexive, symmetric, and transitive is 

called an “equivalence relation”

Equivalence Relation

A relation that is reflexive, antisymmetric, and transitive is 

called a “partial order”

Partial Order Relation



Equivalence Relations

Equivalence relations “act kinda like equals”

≡ (mod n) is an equivalence relation.

≡ on compound propositions is an equivalence relation.

Fun fact: Equivalence relations “partition” their elements.

An equivalence relation 𝑅 on 𝑆 divides 𝑆 into sets 𝑆1, … 𝑆𝑘 such that.

∀𝑠 (𝑠 ∈ 𝑆𝑖 for some 𝑖)

∀𝑠, 𝑠′ (𝑠, 𝑠′ ∈ 𝑆𝑖 for some 𝑖 if and only if 𝑠, 𝑠′ ∈ 𝑅)

𝑆𝑖 ∩ 𝑆𝑗 = ∅ for all 𝑖 ≠ 𝑗



Partial Orders

Partial Orders “behave kinda like less than or equal to”

In the sense that they put things in order

But it’s only kinda like less than – it’s possible that some elements can’t 
be compared.

| on ℤ+ is a partial order

⊆ on 𝒫(𝒰) is a partial order

𝑥 is a prerequisite of (or-equal-to) 𝑦 is a partial order on CSE courses



Why Bother?

If you prove facts about all equivalence relations or all partial orders, 
you instantly get facts in lots of different contexts.

If you learn to recognize partial orders or equivalence relations, you can 
get a lot of intuition for new concepts in a short amount of time. 

Why now? We’ll want relations over the next few weeks (and it’s a 
convenient way to review proving implications, for all statements, and 
so on)



Graphs



Directed Graphs

𝐺 = (𝑉, 𝐸)

𝑉 is a set of vertices (an underlying set of elements)

𝐸 is a set of edges (ordered pairs of vertices; i.e. connections from one 
to the next).

Path 𝑣0, 𝑣1, … , 𝑣𝑘 such that 𝑣𝑖 , 𝑣𝑖+1 ∈ 𝐸
Simple Path: path with all 𝑣𝑖 distinct

Cycle: path with 𝑣0 = 𝑣𝑘 (and 𝑘 > 0)
Simple Cycle: simple path plus edge 

(𝑣𝑘 , 𝑣0) with 𝑘 > 0
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Lecture-Only Content

Relations and Graphs



More Relations and Graphs

The rest of this deck is a little more on:

Relations, specifically combining them together

Graphs, specifically representing relations as graphs.

We’re going to go through it very fast. We won’t have homework or 
exam questions on anything in this section of the deck.

But it is stuff you should see at least once because it might come back 
in future classes.



Combining Relations

Given a relation 𝑅 from 𝐴 to 𝐵

And a relation 𝑆 from 𝐵 to 𝐶,

The relation 𝑆 ∘ 𝑅 from 𝐴 to 𝐶 is 

{ 𝑎, 𝑐 ∶ ∃𝑏[ 𝑎, 𝑏 ∈ 𝑅 ∧ 𝑏, 𝑐 ∈ 𝑆]}

Yes, I promise it’s 𝑆 ∘ 𝑅 not 𝑅 ∘ 𝑆 – it makes more sense if you think 
about relations (𝑥, 𝑓 𝑥 ) and (𝑥, 𝑔 𝑥 )

But also don’t spend a ton of energy worrying about the order, we 
almost always care about 𝑅 ∘ 𝑅, where order doesn’t matter.



Combining Relations

To combine relations, it’s a lot easier if we can see what’s happening.

We’ll use a representation of a directed graph



Representing Relations

To represent a relation 𝑅 on a set A, have a vertex for each element of 𝐴
and have an edge (𝑎, 𝑏) for every pair in 𝑅.

Let 𝐴 be {1,2,3,4} and 𝑅 be { 1,1 , 1,2 , 2,1 , 2,3 , 3,4 }

1

3 4

2



Combining Relations

If 𝑺 = 𝟐, 𝟐 , 𝟐, 𝟑 , 𝟑, 𝟏 and 𝑹 = { 𝟏, 𝟐 , 𝟐, 𝟏 , 𝟏, 𝟑 }
Compute 𝑺 ∘ 𝑹 i.e. every pair (𝑎, 𝑐) with a 𝑏 with 𝑎, 𝑏 ∈ 𝑅 and 𝑏, 𝑐 ∈ 𝑆

1

3

2 1

3

2



Combining Relations

1

3

2 1

3

2

If 𝑺 = 𝟐, 𝟐 , 𝟐, 𝟑 , 𝟑, 𝟏 and 𝑹 = { 𝟏, 𝟐 , 𝟐, 𝟏 , 𝟏, 𝟑 }
Compute 𝑺 ∘ 𝑹 i.e. every pair (𝑎, 𝑐) with a 𝑏 with 𝑎, 𝑏 ∈ 𝑅 and 𝑏, 𝑐 ∈ 𝑆



Combining Relations

Let 𝑅 be a relation on 𝐴.

Define 𝑅0 as { 𝑎, 𝑎 ∶ 𝑎 ∈ 𝐴}

𝑅𝑘 = 𝑅𝑘−1 ∘ 𝑅

𝑎, 𝑏 ∈ 𝑅𝑘 if and only if there is a path of length 𝑘 from 𝑎 to 𝑏 in 𝑅.

We can find that on the graph!



More Powers of 𝑅.

For two vertices in a graph, 𝑎 can reach 𝑏 if there is a path from 𝑎 to 𝑏.

Let 𝑅 be a relation on the set 𝐴. The connectivity relation 𝑅∗ consists of 
all pairs (𝑎, 𝑏) such that 𝑎 can reach 𝑏 (i.e. there is a path from 𝑎 to 𝑏 in 
𝑅)

𝑅∗ = 𝑘=0ڂ
∞ 𝑅𝑘

Note we’re starting from 0 (the textbook makes the unusual choice of 
starting from 𝑘 = 1). 



What’s the point of 𝑅∗

𝑅∗ is also the “reflexive-transitive closure of 𝑅.”

It answers the question “what’s the minimum amount of edges I would 
need to add to 𝑅 to make it reflexive and transitive?”

Why care about that? The transitive-reflexive closure can be a summary 
of data – you might want to precompute it so you can easily check if 𝑎
can reach 𝑏 instead of recomputing it every time.



Relations and Graphs

Describe how each property will show up in the graph of a relation.

Reflexive

Symmetric

Antisymmetric

Transitive



Relations and Graphs

Describe how each property will show up in the graph of a relation.

Reflexive

Symmetric

Antisymmetric

Transitive

Every vertex has a “self-loop” (an edge from the vertex to itself)

Every edge has its “reverse edge” (going the other way) also in the graph.

No edge has its “reverse edge” (going the other way) also in the graph.

If there’s a length-2 path from 𝑎 to 𝑏 then there’s a direct edge from 𝑎 to 𝑏


