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Relations And Graphs |



Announcements

Midterm grades are out. Solutions are on Ed.
There's an Ed Post with how to interpret grades so far.

Remember you can schedule time to meet with TAs 1:1
Can walkthrough your exam with you/give you tips on studying.
Discuss previous concepts before the final exam.

Can also ask questions like these in regular office hours.

Can meet with Robbie 1:1 as well (see the Ed post)
Those topics, but also discussions on grades.

{ Coming soon: an extra video with common midterm misconceptions.



Relations
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Relations

A (binary) relation from A to B is a subset of A X B
A (binary) relation on A is a subset of A x 4

S——

Wait what? —
< is a relation on Z. =
"3 < 4“Is a way of saying "3 relates to 4" (for the < relation) ’
(3,4) is an element of the set that defines the relation.



Properties of relations

What do we do with relations? Usually we prove properties about them.

Symmetry

A binary relation R on a set S is “symmetric” iff
foralla,b € S, [(a,b) € R — (b,a) € R]

= on X" is symmetric, for all a,b € X* if a = b then b = a.
C is not symmetric on P(U) —{1,2,3} < {1,2,3,4} but {1,2,3,4} € {1,2,3}

Transitivity
A binary relation R on a set S is “transitive” iff
foralla,b,c€ S, [(a,b) e RN (b,c) ER — (a,c) € R]

= on X" is transitive, for all a,b,c € XZ* if a = b and b = c then a = c.
C is transitive on P(U) — for any sets A,B,Cif A Band B € C then A C C.
€ is not a transitive relation — 1 € {1,2,3}, {1,2,3} € P({1,2,3}) but 1 ¢ P({1,2,3}).




More Properties of relations

What do we do with relations? Usually we prove properties about them.

Antisymmetry
A binary relation R on a set S is “antisymmetric” iff

foralla,be s, [(a,b) e RNa+ b — (b,a) ¢ R]

< is antisymmetric on Z

Reflexivity

A binary relation R on a set S is “reflexive” iff
foralla € s, [(a,a) € R]

<

< is reflexive on Z



You've proven antisymmetry too!

%a) Prove that if a | b and b | a, where a and b are integers, thena = bora = —b.
Solution: @, \/\()\ 6\
Suppose that a | b and b | a, where a, b are integers. By the definition of divides, we have a # 0, b # 0 and P %
b = ka,a = jb for some integers k, j. Combining these equations, we see that a = j(ka).
Then, dividing both sides by a, we get 1 = jk. So, % = k. Note that j and k are integers, which is only T J’ I/by-\ é\ /
possible if j, k € {1, —1}. It follows that b = —a or b = a.

Antisymmetry

A binary relation R on a set § is “antisymmetric” iff
foralla,b € S, [(a, b,ER/\a;tb -> (b,a) € R]

—

~ You showed is'an ISYyMMEtcEZ> in Section 5.

oralla,b €S, [(a,b) ER A (b,ﬂe R-a= Ii))x| equivalent to the

definition in the box above

The box version is easier to understand, the other version is usually
easlier to prove.

L



Decide whether each of these relations are

Try a few of your own O} \% " (/) J(D\

Reflexive, symmetric, antisymmetric, and
transitive.

(c on P(U)

Symmetry: forall a,b € S, [(a,b) € R — (b,a) € R]
= on Z

Antisymmetry: foralla,b € S, [(a,b) ERAa # b > (b,a) € R]

Transitivity: for all a,b,c € S, [(a,b) € RA(b,c) € R - (a,c) € R]

11 #ﬂ“
_ U U=
jV_(modB)on h \/\R (/ \\ l/t
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Try a feW Of yO ur own Symmet:y: for all CLb €S, [(a,b) € R - (b,a) € R]

Antisymmetry: forall a,b € S, [(a,b) E RAa # b — (b,a) € R]
N——

: : Transitivity: for all a. b, c € S,
Decide whether each of these relations are @by ERA(D,C) R — (a0 R
Reflexive, symmetric, antisymmetric, and

L Reflexivity: for all a € S, [(a, a) € R]
transitive.

C on P(U) reflexive, antisymmetric, transitive
> on Z reflexive, antisymmetric, transitive

> on R antisymmetric, transitive

| on Z7 reflexive, antisymmetric, transitive

| on Z reflexive, transitive

= (mod@ on Z reflexive, symmetric, transitive




How Do symmetry and antisymmetry relate?
- - ~

/

There are relations that are neither symmetric nor antisymmetric.
For example R = {(1,2), (2 1),(1,3)}

&

\
(1 2), (2 1) say you can't be ant|symmetr|c
(1 3) [ vvlthout (3,1)] says you can't be symmetrlc

But you can only be both if the implications are vacuous.

A relation like {(1,1), (2,2), (3,3)} is vacuously symmetric AND
antisymmetric. S@Wrarely seen though. Once you have
x,y where x # y and (x,y) € R the relation cannot be both.




Two Prototype Relations
7

\/

A lot of fundamental relations follow one of two prototypes:

Equivalence Relation

A relation that is reflexive, symmetric, and transitive is
called an “equivalence relation”

‘gPartiaI Order Relation

A relation that is reflexive, antisymmetric, and transitive is
’ called a “partiai order”




Equivalence Relations

RN
Equivalence relations “act kinda like equals”

= (mod n) is an equivalence relation.
= on compound propositions is an equivalence relation.

Fun fact: Equivalence relations “partition” their elements.

An equivalence relation R on S divides § into sets S, ... S§ such that.
Vs (s € S; for some i)

Vs,s' (s,s' € S; forsomeiifandonlyif (s,s’) €R)

SinS; =0 foralli #j



Partial Orders

Partial Orders “behave kinda like less than or equal to”

In the sense that they put things in order

But it's only kinda like less than — it's possible that some elements can't
be compared.

| on Z7 is a partial order

C on P(U) is a partial order
x IS a prerequisite of (or-equal-to) y is a partial order on CSE courses



Why Bother?

If you prove facts about all equivalence relations or all partial orders,
you instantly get facts in lots of different contexts.

If you learn to recognize partial orders or equivalence relations, you can
get a lot of intuition for new concepts in a short amount of time.

Why now? We'll want relations over the next few weeks (and it's a
convenient way to review proving implications, for all statements, and
SO On)






Directed Graphs

G =(V,E)
Z/I; s a set of vertices (an underlying set of elements)

E is a set of edges (ordered pairs of vertices; i.e. connections from one
to the next).

Path vy, vq, ..., Vg such that (v;,v;;1) EE
Simple Path: path with all v; distinct
Cycle: path with vy = v, (and k > 0)

. simple path plus edge
(v, Vo) With k > 0
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Directed Graphs

G =(V,E)
V is a set of vertices (an underlying set of elements)

E is a set of edges (ordered pairs of vertices; i.e. connections from one

to the next).
()

/

()
Path vy, v4, ..., Vg such that (v;,v;1) € E S (’s: ./ ‘/

Simple Path: path with all v; distinct

: )
nycle: path with vy = v, (and k > 0) 4

i)
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. simple path plus edge )
(v, Vo) With k > 0 /’
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Directed Graphs

G =(V,E)
V is a set of vertices (an underlying set of elements)

E is a set of edges (ordered pairs of vertices; i.e. connections from one
to the next).
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Path vy, vy, ..., Vg such that (v;,v;;1) EE \g
. path with all v; distinct
Cycle: path with vy = v, (and k > 0)

. simple path plus edge
(v, Vo) With k > 0
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More Relations and Graphs

The rest of this deck is a little more on:
Relations, specifically combining them together

Graphs, specifically representing relations as graphs.

We're going to go through it very fast. We won't have homework or
exam questions on anything in this section of the deck.

But it is stuff you should see at least once because it might come back
in future classes.



Combining Relations

Given a relation R from Ato B
And a relation S from B to C,

The relation So R from A to C is
{(a,c) : 3b[(a,b) e RA(b,c) € S]}

Yes, | promise it's S e R not R o S — it makes more sense if you think
about relations (x, f(x)) and (x, g(x))

But also don't spend a ton of energy worrying about the order, we
almost always care about R o R, where order doesn’'t matter.



Combining Relations

To combine relations, it's a lot easier if we can see what's happening.

We'll use a representation of a directed graph



Representing Relations

To represent a relation R on a set A, have a vertex for each element of A4
and have an edge (a, b) for every pair in R.

Let A be {1,2,3,4} and R be {(1,1), (1,2),(2,1),(2,3),(3,4)}

o .




Combining Relations

ItS =1{(2,2),(2,3),(3,1)}and R={(1,2),(2,1),(1,3)}
Compute S o R i.e. every pair (a,c) with a b with (a,b) € R and (b,c) €S

o9}
1&, 3/
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Combining Relations

ItS =1{(2,2),(2,3),(3,1)}and R={(1,2),(2,1),(1,3)}
Compute S o R i.e. every pair (a,c) with a b with (a,b) € R and (b,c) €S

o9 Co—e,
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Combining Relations

Let R be a relation on A.
Define R® as {(a,a) : a € A}

Rk — Rk—l o R
(a,b) € R* if and only if there is a path of length k from a to b in R.
We can find that on the graph!



More Powers of R.

For two vertices in a graph, a can reach b if there is a path from a to b.

Let R be a relation on the set A. The connectivity relation R* consists of
all pairs (a, b) such that a can reach b (i.e. there is a path from a to b in

R)
R* = Uy, R¥

Note we're starting from 0 (the textbook makes the unusual choice of
starting from k = 1).



What's the point of R*

R* is also the "reflexive-transitive closure of R”

It answers the question “what's the minimum amount of edges | would
need to add to R to make it reflexive and transitive?”

Why care about that? The transitive-reflexive closure can be a summary
of data — you might want to precompute it so you can easily check if a
can reach b instead of recomputing it every time.



Relations and Graphs

Describe how each property will show up in the graph of a relation.

Reflexive
Symmetric
Antisymmetric

Transitive



Relations and Graphs

Describe how each property will show up in the graph of a relation.

Reflexive
Every vertex has a “self-loop” (an edge from the vertex to itself)

Symmetric

Every edge has its “reverse edge” (going the other way) also in the graph.

Antisymmetric
No edge has its “reverse edge” (going the other way) also in the graph.

Transitive
If there’s a length-2 path from a to b then there’s a direct edge from a to b



