The set of binary strings with a 1 in the $3^{\text {rd }}$ position from the start

Nondeterministic Finite Automata

An NFA:

Still has exactly one start state and any number of final states.
The NFA accepts x if there is some path from a start state to a final state labeled with x.
From a state, you can have 0,1, or many outgoing arrows labeled with a single character. You can choose any of them to build the required path.

Three ways to think about NFAs

"Outside Observer": is there a path labeled by x from the start state, to the final state (if we know the input in advance can we tell the NFA which decisions to make)
"Perfect Guesser": The NFA has input x, and whenever there is a choice of what to do, it magically guesses a transition that will eventually lead to acceptance (if one exists)
"Parallel exploration": The NFA computation runs all possible computations on x in parallel (updating each possible one at every step)

What about those ε-transitions?

