Let $P(A)$ be "There is an NFA whose language

 is the same as the language for A."Let R be a regex not covered by the base cases. By the exclusion rule, $R=A \cup B$ or $A B$ or A^{*} from some regexes A, B Inductive Hypothesis: Suppose $P(A)$ and $P(B)$. Inductive Step: Case 2: AB

Want a machine that accepts exactly strings matched by $A B$.

Forcing a Mistake

How do we know x, y must be in different states?
Well if one would be accepted and the other rejected, that would be a clear sign.

Or if there's some string z where $x z$ is accepted but $y z$ is rejected (or vice versa).
The machine is deterministic! If x and y take you to the same state, then $x z$ and $y z$ are also in the same state!

A Proof Outline

Claim: $\left\{0^{k} 1^{k}: k \geq 0\right\}$ is an irregular language.

Let $S=[T O D O]$. S is an infinite set of strings.
Because the DFA is finite, there are two (different) strings x, y in S such that x and y go to the same state. We don't get to choose x, y
Consider the string $z=[T O D O]$ We do get to choose z depending on x, y
Since x, y led to the same state and M is deterministic, $x z$ and $y z$ will also lead to the same state q in M. Observe that $x z \in\left\{0^{k} 1^{k}: k \geq 0\right\}$ but $y z \notin$ $\left\{0^{k} 1^{k}: k \geq 0\right\}$. Since q is can be only one of an accept or reject state, M does not actually recognize $\left\{0^{k} 1^{k}: k \geq 0\right\}$. That's a contradiction!
Therefore, $\left\{0^{k} 1^{k}: k \geq 0\right\}$ is an irregular language.

Claim: $\left\{0^{k} 1^{k}: k \geq 0\right\}$ is an irregular language.
Proof:
Suppose, for the sake of contradiction, that $\left\{0^{k} 1^{k}: k \geq 0\right\}$ is regular.
Then there is a DFA M such that M accepts exactly $\left\{0^{k} 1^{k}: k \geq 0\right\}$.
Let $S=\left\{0^{k}: k \geq 0\right\}$.
Because the DFA is finite and S is infinite, there are two (different) strings x, y in S such that x and y.go to the same state when read by M. Since both are in $S, x=0^{a}$ for some integer a, and $y=0^{b}$ for some integer b, with $a \neq b$.
Consider the string $z=1^{\text {a }} . x z=0^{a} 1^{a} \in\left\{0^{k} 1^{k}: k \geq 0\right\}$ but $y z=0^{b} 1^{a} \notin$ $\left\{0^{k} 1^{k}: k \geq 0\right\}$.
Since x, y both end up in the same state, and we appended the same z, both $x z$ and $y z$ end up in the same state of M.
Since $x z \in\left\{0^{k} 1^{k}: k \geq 0\right\}$ and $y z \notin\left\{0^{k} 1^{k}: k \geq 0\right\}, M$ does not recognize $\left\{0^{k} 1^{k}: k \geq 0\right\}$. But that's a contradiction!
So $\left\{0^{k} 1^{k}: k \geq 0\right\}$ must be an irregular language.

