Full outline

1. Suppose for the sake of contradiction that L is regular. Then there is some DFA M that recognizes L.
2. Let S be [fill in with an infinite set of prefixes].
3. Because the DFA is finite and S is infinite, there are two (different) strings x, y in S such that x and y go to the same state when read by $M[y o u$ don't get to control x, y other than having them not equal and in $S J$
4. Consider the string z [argue exactly one of xz, yz will be in L]
5. Since x, y both end up in the same state, and we appended the same z, both $x z$ and $y z$ end up in the same state of M. Since $x z \in L$ and $y z \notin L, M$ does not recognize L. But that's a contradiction!
6. So L must be an irregular language.

Bijection

One-to-one (aka injection)
A function f is one-to-one iff
$\forall a \forall b(f(a)=f(b) \rightarrow a=b)$

Onto (aka surjection)

A function $f: A \rightarrow B$ is onto iff
$\forall b \in B \exists a \in A(b=f(a))$

Bijection

A function $f: A \rightarrow B$ is a bijection iff f is one-to-one and onto

A bijection maps every element of the domain to exactly one element of the co-domain, and every element of the domain to exactly one element of the domain.

What do real numbers look like

0. $33333333 \ldots$
1. $27272854 \ldots$
2. $141559265 \ldots$
3. $22222222 \ldots$
4. $12345678 \ldots$
5. $98765432 \ldots$
6. $82764574 \ldots$
7. $5 \quad 9427517 \ldots$

A string of digits!
Well not a "string" An
infinitely long sequence of digits is more accurate.

Proof that $[0,1)$ is not countable

Suppose, for the sake of contradiction, that there is a list of them:

Number	Digits after decimal	0	1	2	3	4	5	6	7	\ldots
$f(0)$	0.	3	3	3	3	3	3	3	3	\cdots
$f(1)$	0.	2	7	2	7	2	8	5	4	...
$f(2)$	0.	1	4	1	5	9	2	6	5	\cdots
$f(3)$	0.	2	2	2	2	2	2	2	2	...
$f(4)$	0.	1	2	3	4	5	6	7	8	\cdots
$f(5)$	0.	9	8	7	6	5	4	3	2	\cdots
$f(6)$	0.	8	2	7	6	4	5	7	4	\cdots
$f(7)$	0.	5	9	4	2	7	5	1	7	...
...	...	\ldots	-	\cdots	\cdots	...	\ldots	\cdots	\cdots	\cdots

