Full outline

1. Suppose for the sake of contradiction that L is regular. Then there is some DFA M that recognizes L.

2. Let *S* be [fill in with an infinite set of prefixes].

3. Because the DFA is finite and S is infinite, there are two (different) strings x, y in S such that x and y go to the same state when read by M [you don't get to control x, y other than having them not equal and in S]

4. Consider the string z [argue exactly one of xz, yz will be in L]

5. Since x, y both end up in the same state, and we appended the same z, both xz and yz end up in the same state of M. Since $xz \in L$ and $yz \notin L$, M does not recognize L. But that's a contradiction!

6. So *L* must be an irregular language.

0. 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 ... 0. 2 7 2 7 2 8 5 4... 0. 1 4 1 5 9 2 6 5... 0. 2 2 2 2 2 2 2 2 2 2 2 2 ... 0. 1 2 3 4 5 6 7 8... 0. 9 8 7 6 5 4 3 2... 0. 8 2 7 6 4 5 7 4... 0. 5 9 4 2 7 5 1 7...

Proof that [0,1) is not countable Suppose, for the sake of contradiction, that there is a list of them:										
Number	Digits after decimal	0	1	2	3	4	5	6	7	
<i>f</i> (0)	0.	3	3	3	3	3	3	3	3	
f(1)	0.	2	7	2	7	2	8	5	4	
<i>f</i> (2)	0.	1	4	1	5	9	2	6	5	
<i>f</i> (3)	0.	2	2	2	2	2	2	2	2	
<i>f</i> (4)	0.	1	2	3	4	5	6	7	8	
<i>f</i> (5)	0.	9	8	7	6	5	4	3	2	
<i>f</i> (6)	0.	8	2	7	6	4	5	7	4	
<i>f</i> (7)	0.	5	9	4	2	7	5	1	7	