CSE 311 Midterm Review!

Midterm Review

Administrivia

Announcements \& Reminders

TONIGHT @ 6-7:30 pm in BAG 131 and 154

- Please bring an ID (Husky Card or other ID) to the exam. We'll be checking those during the exam.
- Remember you're allowed one piece of paper of handwritten notes. Please read details on the exams page.
- Check your email for room assignments

Set Theory

Problem 4- Section 04

Write an English proof, proving the following set identity
Let the universal set be U. Prove $A \cap B^{\prime} \subseteq A l B$ for any sets A, B.

Work on this problem with the people around you.
(1) Translate the claim to predicate
(2) Write out the skeleton

Problem 4- Section 04

Write an English proof, proving the following set identity

Let the universal set be U. Prove $A \cap B^{\prime} \subseteq A \backslash B$ for any sets A, B.

Work on this problem with the people around you.
(1) Translate the claim to predicate

$$
\forall x\left(x \in A \cap B^{\prime} \rightarrow x \in A \backslash B\right)
$$

(2) Write out the skeleton

Remember the Skeleton!

How would we show $A \subseteq B$?

$$
A \subseteq B \equiv \forall x(x \in A \rightarrow x \in B)
$$

Let x be an arbitrary element of A

So x is also in B.
Since x was an arbitrary element of A, we have that $A \subseteq B$.

Problem 4-Section 04

Write an English proof, proving the following set identity
Let the universal set be U. Prove $A \cap B^{\prime} \subseteq A l B$ for any sets A, B.
Let x be an arbitrary element and suppose that $x \in A \cap B^{\prime}$.
...So $x \in$ AlB.
Since x was arbitrary, we can conclude that $A \cap B^{\prime} \subseteq A \mid B$ by definition of subset

Problem 4- Section 04

Write an English proof, proving the following set identity
Let the universal set be U. Prove $A \cap B^{\prime} \subseteq A l B$ for any sets A, B.
Let x be an arbitrary element and suppose that $x \in A \cap B$ '. By definition of intersection, $x \in A$ and $x \in B^{\prime}$
...So $x \in$ AlB.
Since x was arbitrary, we can conclude that $A \cap B^{\prime} \subseteq A \backslash B$ by definition of subset

Problem 4- Section 04

Write an English proof, proving the following set identity
Let the universal set be U. Prove $A \cap B^{\prime} \subseteq A l B$ for any sets A, B.
Let x be an arbitrary element and suppose that $x \in A \cap B$ '. By definition of intersection, $x \in A$ and $x \in B^{\prime}$
So by definition of complement, $x \notin B$
...So $x \in$ AlB.
Since x was arbitrary, we can conclude that $A \cap B^{\prime} \subseteq A \backslash B$ by definition of subset

Problem 4- Section 04

Write an English proof, proving the following set identity
Let the universal set be U. Prove $A \cap B^{\prime} \subseteq A l B$ for any sets A, B.
Let x be an arbitrary element and suppose that $x \in A \cap B$ '. By definition of intersection, $x \in A$ and $x \in B$ '
So by definition of complement, $x \notin B$
Then, by definition of set difference, $x \in A \mid B$.
Since x was arbitrary, we can conclude that $A \cap B^{\prime} \subseteq A \backslash B$ by definition of subset

Strong Induction

Problem 6 - Section 06 (23sp)

Consider the function $a(n)$ defined for $n \geqslant 1$ recursively as follows.

$$
\begin{gathered}
a(1)=1 \\
a(2)=3 \\
a(n)=2 a(n-1)-a(n-2) \text { for } n \geqslant 3
\end{gathered}
$$

Use strong induction to prove that $a(n)=2 n-1$ for all $n \geqslant 1$.

Work on this problem with the people around you.

Remember our Strong Induction Template!

Let $P(n)$ be "(whatever you're trying to prove)". We show $P(n)$ holds for all $n \geq b_{\text {min }}$ by induction on n.

Base Case: Show $P\left(b_{\min }\right), P\left(b_{\min +1}\right), \ldots, P\left(b_{\max }\right)$ are all true.
Inductive Hypothesis: Suppose $P\left(b_{\min }\right) \wedge \cdots \wedge P(k)$ hold for an arbitrary $k \geq b_{\max }$.

Inductive Step: Show $P(k+1)$ (i.e. get $P\left(b_{\text {min }}\right) \wedge \cdots \wedge P(k) \rightarrow P(k+1)$)
Conclusion: Therefore, $P(n)$ holds for all $n \geq b_{\min }$ by the principle of induction.

Consider the function $a(n)$ defined for $n \geqslant 1$ recursively as follows.

Let's Write it Out:

$$
\begin{gathered}
a(1)=1 \\
a(2)=3 \\
a(n)=2 a(n-1)-a(n-2) \text { for } n \geqslant 3
\end{gathered}
$$

Use strong induction to prove that $a(n)=2 n-1$ for all $n \geqslant 1$.

Consider the function $a(n)$ defined for $n \geqslant 1$ recursively as follows.

Problem 6

$$
\begin{gathered}
a(1)=1 \\
a(2)=3 \\
a(n)=2 a(n-1)-a(n-2) \text { for } n \geqslant 3
\end{gathered}
$$

Use strong induction to prove that $a(n)=2 n-1$ for all $n \geqslant 1$.
Let $P(n)$ be "".
We show $P(n)$ holds...

Base Cases:

Inductive Hypothesis:

Inductive Step:

Conclusion: Therefore, $\mathrm{P}(\mathrm{n})$ holds for all \ldots by the principle of induction

Consider the function $a(n)$ defined for $n \geqslant 1$ recursively as follows.

Problem 6

$$
\begin{gathered}
a(1)=1 \\
a(2)=3 \\
a(n)=2 a(n-1)-a(n-2) \text { for } n \geqslant 3
\end{gathered}
$$

Use strong induction to prove that $a(n)=2 n-1$ for all $n \geqslant 1$.
Let $P(n)$ be " $a(n)=2 n-1$ ".
We show $P(n)$ holds...

Base Cases:

Inductive Hypothesis:

Inductive Step:

Conclusion: Therefore, $\mathrm{P}(\mathrm{n})$ holds for all \ldots by the principle of induction

Consider the function $a(n)$ defined for $n \geqslant 1$ recursively as follows.

Problem 6

$$
\begin{gathered}
a(1)=1 \\
a(2)=3 \\
a(n)=2 a(n-1)-a(n-2) \text { for } n \geqslant 3
\end{gathered}
$$

Use strong induction to prove that $a(n)=2 n-1$ for all $n \geqslant 1$.
Let $P(n)$ be " $a(n)=2 n-1$ ".
We show $P(n)$ holds for all $n \geq 1$ by induction on n.

Base Cases:

Inductive Hypothesis:

Inductive Step:

Conclusion: Therefore, $\mathrm{P}(\mathrm{n})$ holds for all $\mathrm{n} \geq 1$ by the principle of induction

Consider the function $a(n)$ defined for $n \geqslant 1$ recursively as follows.

Problem 6

$$
\begin{gathered}
a(1)=1 \\
a(2)=3 \\
a(n)=2 a(n-1)-a(n-2) \text { for } n \geqslant 3
\end{gathered}
$$

Use strong induction to prove that $a(n)=2 n-1$ for all $n \geqslant 1$.
Let $P(n)$ be "a(n) $=2 n-1$ ".
We show $P(n)$ holds for all $n \geq 1$ by induction on n.
Base Cases: $(n=1, n=2) a(1)=1=2(1)-1$ and $a(2)=3=2(2)-1$ by definition of a. Inductive Hypothesis:

Inductive Step:

Conclusion: Therefore, $\mathrm{P}(\mathrm{n})$ holds for all $\mathrm{n} \geq 1$ by the principle of induction

Problem 6

$$
\begin{gathered}
a(1)=1 \\
a(2)=3 \\
a(n)=2 a(n-1)-a(n-2) \text { for } n \geqslant 3
\end{gathered}
$$

Use strong induction to prove that $a(n)=2 n-1$ for all $n \geqslant 1$.
Let $P(n)$ be " $a(n)=2 n-1$ ".
We show $P(n)$ holds for all $n \geq 1$ by induction on n.
Base Cases: $(n=1, n=2) a(1)=1=2(1)-1$ and $a(2)=3=2(2)-1$ by definition of a. Inductive Hypothesis: Suppose $P(1) \wedge P(2) \wedge \ldots \wedge P(k)$ hold for an arbitrary $k \geq 2$. i.e. $a(k)=2 k-1, a(k-1)=2(k-1)-1, a(k-2)=2(k-2)-1$, etc. Inductive Step:

Conclusion: Therefore, $\mathrm{P}(\mathrm{n})$ holds for all $\mathrm{n} \geq 1$ by the principle of induction

Problem 6

$$
\begin{gathered}
a(1)=1 \\
a(2)=3 \\
a(n)=2 a(n-1)-a(n-2) \text { for } n \geqslant 3
\end{gathered}
$$

Use strong induction to prove that $a(n)=2 n-1$ for all $n \geqslant 1$.

Let $P(n)$ be " $a(n)=2 n-1$ ".
We show $P(n)$ holds for all $n \geq 1$ by induction on n.
Base Cases: $(\mathrm{n}=1, \mathrm{n}=2) \mathrm{a}(1)=1=2(1)-1$ and $\mathrm{a}(2)=3=2(2)-1$ by definition of a. Inductive Hypothesis: Suppose $P(1) \wedge P(2) \wedge \ldots \wedge P(k)$ hold for an arbitrary $k \geq 2$. i.e. $a(k)=2 k-1, a(k-1)=2(k-1)-1, a(k-2)=2(k-2)-1$, etc. Inductive Step: Goal: Show $P(k+1): a(k+1)=2(k+1)-1$

Conclusion: Therefore, $P(n)$ holds for all $n \geq 1$ by the principle of induction

Problem 6

$$
\begin{gathered}
a(1)=1 \\
a(2)=3 \\
a(n)=2 a(n-1)-a(n-2) \text { for } n \geqslant 3
\end{gathered}
$$

Use strong induction to prove that $a(n)=2 n-1$ for all $n \geqslant 1$.

Let $P(n)$ be " $a(n)=2 n-1$ ".
We show $P(n)$ holds for all $n \geq 1$ by induction on n.
Base Cases: $(\mathrm{n}=1, \mathrm{n}=2) \mathrm{a}(1)=1=2(1)-1$ and $\mathrm{a}(2)=3=2(2)-1$ by definition of a . Inductive Hypothesis: Suppose $\mathrm{P}(1) \wedge \mathrm{P}(2) \wedge \ldots \wedge \mathrm{P}(\mathrm{k})$ hold for an arbitrary $\mathrm{k} \geq 2$. i.e. $a(k)=2 k-1, a(k-1)=2(k-1)-1, a(k-2)=2(k-2)-1$, etc. Inductive Step: Goal: Show $P(k+1): a(k+1)=2(k+1)-1$

$$
\begin{aligned}
a(k+1)= & \ldots \\
& \ldots \\
& =2(k+1)-1
\end{aligned}
$$

Conclusion: Therefore, $\mathrm{P}(\mathrm{n})$ holds for all $\mathrm{n} \geq 1$ by the principle of induction

Problem 6

$$
\begin{gathered}
a(1)=1 \\
a(2)=3 \\
a(n)=2 a(n-1)-a(n-2) \text { for } n \geqslant 3
\end{gathered}
$$

Use strong induction to prove that $a(n)=2 n-1$ for all $n \geqslant 1$.

Let $P(n)$ be " $a(n)=2 n-1$ ".
We show $P(n)$ holds for all $n \geq 1$ by induction on n.
Base Cases: $(n=1, n=2) a(1)=1=2(1)-1$ and $a(2)=3=2(2)-1$ by definition of a. Inductive Hypothesis: Suppose $P(1) \wedge P(2) \wedge \ldots \wedge P(k)$ hold for an arbitrary $k \geq 2$. i.e. $a(k)=2 k-1, a(k-1)=2(k-1)-1, a(k-2)=2(k-2)-1$, etc. Inductive Step: Goal: Show $P(k+1): a(k+1)=2(k+1)-1$

$$
\begin{aligned}
a(k+1) & =2 a(k)-a(k-1) \quad \text { [Definition of } a] \\
& \ldots \\
& =2(k+1)-1
\end{aligned}
$$

Conclusion: Therefore, $P(n)$ holds for all $n \geq 1$ by the principle of induction

Problem 6

$$
\begin{gathered}
a(1)=1 \\
a(2)=3 \\
a(n)=2 a(n-1)-a(n-2) \text { for } n \geqslant 3
\end{gathered}
$$

Use strong induction to prove that $a(n)=2 n-1$ for all $n \geqslant 1$.
Let $P(n)$ be "a(n) $=2 n-1$ ".
We show $P(n)$ holds for all $n \geq 1$ by induction on n.
Base Cases: $(n=1, n=2) a(1)=1=2(1)-1$ and $a(2)=3=2(2)-1$ by definition of a. Inductive Hypothesis: Suppose $P(1) \wedge P(2) \wedge \ldots \wedge P(k)$ hold for an arbitrary $k \geq 2$. i.e. $a(k)=2 k-1, a(k-1)=2(k-1)-1, a(k-2)=2(k-2)-1$, etc. Inductive Step: Goal: Show $P(k+1): a(k+1)=2(k+1)-1$

$$
\begin{aligned}
a(k+1) & =2 a(k)-a(k-1) & & \text { [Definition of a] } \\
& =2(2 k-1)-(2(k-1)-1) & & \text { [Inductive Hypothesis] } \\
& \cdots & & \\
& =2(k+1)-1 & &
\end{aligned}
$$

Conclusion: Therefore, $\mathrm{P}(\mathrm{n})$ holds for all $\mathrm{n} \geq 1$ by the principle of induction

Problem 6

$$
\begin{gathered}
a(1)=1 \\
a(2)=3 \\
a(n)=2 a(n-1)-a(n-2) \text { for } n \geqslant 3
\end{gathered}
$$

Use strong induction to prove that $a(n)=2 n-1$ for all $n \geqslant 1$.
Let $P(n)$ be "a(n) $=2 n-1$ ".
We show $P(n)$ holds for all $n \geq 1$ by induction on n.
Base Cases: $(n=1, n=2) a(1)=1=2(1)-1$ and $a(2)=3=2(2)-1$ by definition of a. Inductive Hypothesis: Suppose $P(1) \wedge P(2) \wedge \ldots \wedge P(k)$ hold for an arbitrary $k \geq 2$. i.e. $a(k)=2 k-1, a(k-1)=2(k-1)-1, a(k-2)=2(k-2)-1$, etc. Inductive Step: Goal: Show $P(k+1): a(k+1)=2(k+1)-1$

$$
\begin{aligned}
a(k+1) & =2 a(k)-a(k-1) \\
& =2(2 k-1)-(2(k-1)-1) \\
& =2 k+1 \\
& =2(k+1)-1
\end{aligned}
$$

[Definition of a]
[Inductive Hypothesis]
[Algebra]
[Algebra

Conclusion: Therefore, $\mathrm{P}(\mathrm{n})$ holds for all $\mathrm{n} \geq 1$ by the principle of induction

Questions?

Topics:

- Translations \& Predicate Logic
- English Proofs
- Number Theory
- Set Theory
- Strong Induction
- Weak Induction

That's All Folks!

Breathe, you are going to do great!

