CSE 311 Midterm Review!

Midterm Review




Administrivia




Announcements & Reminders

TONIGHT @ 6-7:30 pm in BAG 131 and 154

e Please bring an ID (Husky Card or other ID) to the exam. We'll be checking
those during the exam.

e Remember you're allowed one piece of paper of handwritten notes. Please
read details on the exams page.

e Check your email for room assignments


https://courses.cs.washington.edu/courses/cse311/23au/exams/

Set Theory




Problem 4- Section 04

Write an English proof, proving the following set identity
Let the universal set be U . Prove AN B’ S A\B for any sets A, B.
Work on this problem with the people around you.

(1) Translate the claim to predicate
(2) Write out the skeleton



Problem 4- Section 04

Write an English proof, proving the following set identity

Let the universal set be U . Prove AN B’ S A\B for any sets A, B.

Work on this problem with the people around you.

(1) Translate the claim to predicate
Vx(x € ANB — x € A\B)

(2) Write out the skeleton



Remember the Skeleton!

5
How would we show A € B ACSB=Vx(x€A-xE€B)

Let x be an arbitrary element of A

So x is also in B.
Since x was an arbitrary element of A, we have that A € B.




Let's Write it Out: Vx(x € ANB — x € A\B)



Problem 4- Section 04

Write an English proof, proving the following set identity

Let the universal set be U . Prove AN B’ & A\B for any sets A, B.

Let x be an arbitrary element and suppose thatx € AN B'.

...S0 x € A\B.

Since x was arbitrary, we can conclude that AN B’ € A\B by
definition of subset



Problem 4- Section 04

Write an English proof, proving the following set identity

Let the universal set be U . Prove AN B’ & A\B for any sets A, B.

Let x be an arbitrary element and suppose thatx € AN B'.
By definition of intersection, x € Aand x € B’

...S0 X € A\B.

Since x was arbitrary, we can conclude that AN B’ € A\B by
definition of subset



Problem 4- Section 04

Write an English proof, proving the following set identity

Let the universal set be U . Prove AN B’ & A\B for any sets A, B.

Let x be an arbitrary element and suppose thatx € AN B'.
By definition of intersection, x € Aand x € B’
So by definition of complement, x ¢ B

...S0 X € A\B.

Since x was arbitrary, we can conclude that AN B’ € A\B by
definition of subset



Problem 4- Section 04

Write an English proof, proving the following set identity

Let the universal set be U . Prove AN B’ & A\B for any sets A, B.

Let x be an arbitrary element and suppose thatx € AN B'.
By definition of intersection, x € Aand x € B’
So by definition of complement, x ¢ B

Then, by definition of set difference, x € A\B.

Since x was arbitrary, we can conclude that AN B’ € A\B by
definition of subset




Strong Induction




Problem 6 - Section 06 (23sp)

Consider the function a(n) defined for n > 1 recursively as follows.
a(l) =1

a(2) =3
a(n) =2a(n—1)—a(n—2) forn >3

Use strong induction to prove that a(n) = 2n — 1 for all n > 1.

Work on this problem with the people around you.



Remember our Strong Induction Template!

Let P(n) be “(whateveryou’re trying to prove)”.
We show P(n) holds foralln > b,,;,, by induction on n.

Base Case: Show P(b,,in), P(Bins 1) ---» P(bmgy) are all true.

Inductive Hypothesis: Suppose P(b,,,in) A -+ A P(k) hold for an arbitrary
k = by

Inductive Step: Show P(k + 1) (i.e. get P(bin) A AP(k) - P(k + 1))

Conclusion: Therefore, P(n) holds for alln = b,,,;,, by the principle of
induction.




Let's Write it Out:

Consider the function a(n) defined for n > 1 recursively as follows.
a(l)y=1
a(2) =3
a(n) = 2a(n —1) —a(n —2) forn >3

Use strong induction to prove that a(n) = 2n —1 for all n > 1.



Consider the function a(n) defined for n > 1 recursively as follows.
a(l)y=1
a(2) =3
Problem 6 o) = 2an— 1) o2 o >
Use strong induction to prove that a(n) = 2n —1 for all n > 1.
Let P(n) be .
We show P(n) holds...
Base Cases:
Inductive Hypothesis:

Inductive Step:

Conclusion: Therefore, P(n) holds for all ... by the principle of induction




Consider the function a(n) defined for n > 1 recursively as follows.
a(l)y=1
a(2) =3
Problem 6 o) = 2an— 1) o2 o >
Use strong induction to prove that a(n) = 2n —1 for all n > 1.
Let P(n) be “a(n) =2n - 1”.
We show P(n) holds...
Base Cases:
Inductive Hypothesis:

Inductive Step:

Conclusion: Therefore, P(n) holds for all ... by the principle of induction




Consider the function a(n) defined for n > 1 recursively as follows.
a(l)y=1
a(2) =3
Problem 6 o) = 20 1) el fr >3
Use strong induction to prove that a(n) = 2n —1 for all n > 1.
Let P(n) be “a(n) =2n - 1”.
We show P(n) holds for all n = 1 by induction on n.
Base Cases:
Inductive Hypothesis:

Inductive Step:

Conclusion: Therefore, P(n) holds for all n = 1 by the principle of induction




Consider the function a(n) defined for n > 1 recursively as follows.
a(l) =1
a(2) =3
Problem 6 ) = Bl 1) — el ) o 3 3
Use strong induction to prove that a(n) = 2n — 1 for all n > 1.
Let P(n) be “a(n) =2n - 1”.
We show P(n) holds for all n = 1 by induction on n.
Base Cases: (n=1,n=2) a(1)=1=2(1)-1and a(2) = 3 = 2(2) - 1 by definition of a.
Inductive Hypothesis:

Inductive Step:

Conclusion: Therefore, P(n) holds for all n = 1 by the principle of induction




Consider the function a(n) defined for n > 1 recursively as follows.
a(l) =1
a(2) =3
Problem 6 )= 2= 1) =) a3
Use strong induction to prove that a(n) = 2n — 1 for all n > 1.
Let P(n) be “a(n) =2n - 1”.
We show P(n) holds for all n = 1 by induction on n.
Base Cases: (n=1,n=2) a(1)=1=2(1)-1and a(2) = 3 = 2(2) - 1 by definition of a.
Inductive Hypothesis: Suppose P(1) ~ P(2) ~ ... ~ P(k) hold for an arbitrary k = 2.
ie.a(k)=2k-1,akk-1)=2(k-1)-1,ak-2)=2(k-2)-1, etc.
Inductive Step:

Conclusion: Therefore, P(n) holds for all n = 1 by the principle of induction




Consider the function a(n) defined for n > 1 recursively as follows.
a(l) =1
a(2) =3
Problem 6 )= 2= 1) =) a3
Use strong induction to prove that a(n) = 2n — 1 for all n > 1.
Let P(n) be “a(n) =2n - 1”.
We show P(n) holds for all n = 1 by induction on n.
Base Cases: (n=1,n=2) a(1)=1=2(1)-1and a(2) = 3 = 2(2) - 1 by definition of a.
Inductive Hypothesis: Suppose P(1) ~ P(2) ~ ... ~ P(k) hold for an arbitrary k = 2.
ie.a(k)=2k-1,akk-1)=2(k-1)-1,ak-2)=2(k-2)-1, etc.
Inductive Step: Goal: Show P(k + 1): a(k + 1) =2(k + 1) - 1

Conclusion: Therefore, P(n) holds for all n = 1 by the principle of induction




Consider the function a(n) defined for n > 1 recursively as follows.
a(l) =1
a(2) =3
Problem 6 )= 2= 1) =) a3
Use strong induction to prove that a(n) = 2n — 1 for all n > 1.
Let P(n) be “a(n) =2n - 1”.
We show P(n) holds for all n = 1 by induction on n.
Base Cases: (n=1,n=2) a(1)=1=2(1)-1and a(2) = 3 = 2(2) - 1 by definition of a.
Inductive Hypothesis: Suppose P(1) ~ P(2) ~ ... ~ P(k) hold for an arbitrary k = 2.
ie.a(k)=2k-1,akk-1)=2(k-1)-1,ak-2)=2(k-2)-1, etc.
Inductive Step: Goal: Show P(k + 1): a(k + 1) =2(k + 1) - 1

ak+1)=...
.=“2(k+ 1) -1

Conclusion: Therefore, P(n) holds for all n = 1 by the principle of induction




Consider the function a(n) defined for n > 1 recursively as follows.
a(l) =1
a(2) =3
Problem 6 )= 2= 1) =) a3
Use strong induction to prove that a(n) = 2n — 1 for all n > 1.
Let P(n) be “a(n) =2n - 1”.
We show P(n) holds for all n = 1 by induction on n.
Base Cases: (n=1,n=2) a(1)=1=2(1)-1and a(2) = 3 = 2(2) - 1 by definition of a.
Inductive Hypothesis: Suppose P(1) ~ P(2) ~ ... ~ P(k) hold for an arbitrary k = 2.
ie.a(k)=2k-1,akk-1)=2(k-1)-1,ak-2)=2(k-2)-1, etc.
Inductive Step: Goal: Show P(k + 1): a(k + 1) =2(k + 1) - 1

alk +1)=2a(k)-a(k-1) [Definition of a]
.=..2(k +1)-1

Conclusion: Therefore, P(n) holds for all n = 1 by the principle of induction




Consider the function a(n) defined for n > 1 recursively as follows.

a(l) =1

Problem 6 et~ el Bt
Use strong induction to prove that a(n) = 2n — 1 for all n > 1.
Let P(n) be “a(n) =2n - 1”.
We show P(n) holds for all n = 1 by induction on n.
Base Cases: (n=1,n=2) a(1)=1=2(1)-1and a(2) = 3 = 2(2) - 1 by definition of a.
Inductive Hypothesis: Suppose P(1) ~ P(2) ~ ... ~ P(k) hold for an arbitrary k = 2.
ie.a(k)=2k-1,akk-1)=2(k-1)-1,ak-2)=2(k-2)-1, etc.
Inductive Step: Goal: Show P(k + 1): a(k + 1) =2(k + 1) - 1

alk +1)=2a(k)-a(k-1) [Definition of a]
=2(2k-1)-(2(k-1)-1) [Inductive Hypothesis]

.=..2(k+ 1) -1

Conclusion: Therefore, P(n) holds for all n = 1 by the principle of induction




Consider the function a(n) defined for n > 1 recursively as follows.

a(l) =1

Problem 6 et~ el Bt
Use strong induction to prove that a(n) = 2n — 1 for all n > 1.
Let P(n) be “a(n) =2n - 1”.
We show P(n) holds for all n = 1 by induction on n.
Base Cases: (n=1,n=2) a(1)=1=2(1)-1and a(2) = 3 = 2(2) - 1 by definition of a.
Inductive Hypothesis: Suppose P(1) ~ P(2) ~ ... ~ P(k) hold for an arbitrary k = 2.
ie.a(k)=2k-1,akk-1)=2(k-1)-1,ak-2)=2(k-2)-1, etc.
Inductive Step: Goal: Show P(k + 1): a(k + 1) =2(k + 1) - 1

alkk+1)=2a(k)-a(k-1) [Definition of a]
=2(2k-1)-(2(k-1)-1) [Inductive Hypothesis]
=2k +1 [Algebra]
=2(k+1)-1 [Algebra

Conclusion: Therefore, P(n) holds for all n = 1 by the principle of induction




Questions?

Topics:

Translations & Predicate Logic
English Proofs
Number Theory

Set Theory
Strong Induction
Weak Induction




That's All Folks!

Breathe, you are going to do great!




