CSE 311 Section 1

Propositional Logic

Administrivia & Introductions

Homework

- Submissions
 - LaTeX (highly encouraged)
 - overleaf.com
 - template and LaTeX guide posted on course website!
 - Word Editor that supports mathematical equations
 - Handwritten neatly and scanned
- All homeworks will be turned in via Gradescope
- Homeworks typically due on Fridays at 10pm
- You have 6 late days **total** to use throughout the quarter
 - Anything beyond that will result in a deduction on further late assignments
- Only 3 late days max can be used per assignment

Announcements & Reminders

- Sections are Graded
 - You will be graded on section participation, so please try to come 🙂
- Section Materials
 - Handouts will be provided in at each section
 - Worksheets and sample solutions will be available on the course calendar later this evening
- HW1
 - Due Friday 10/6 @ 10pm

Icebreaker

- Small groups of 4-6ish
- Please share with your group
 - Your name
 - Number of years in department/ at UW
 - What was something fun you did over Summer break?
 - What are you concerned about for 311 / what are you excited about?
- Then, share how you like to eat your potatoes (baked, fried, chips, etc.)
- We'll go around and see what style of potato is most popular!

Propositions & Implications

Quick Concept Review

- **Propositions** are statements with a boolean truth value!
 - **"The AQI of Seattle is 50**" is a proposition. We know it's either true or false.
 - **"The AQI of Seattle?**" is not. Suddenly it could be hundreds of values.
 - In formal logic, we like to assign a proposition into a variable for later use.
- Logical connectives connect propositions to form new propositions!

 $\neg p$ $p \land q$ $p \lor q$ $p \rightarrow q$ $p \leftrightarrow q$

Truth Tables

Gives us a simple way to describe how logical connectives operate

p	$\neg p$
Т	F
F	Τ

p	q	$p \land q$
Т	Т	Т
Т	F	F
F	Т	F
F	F	F

p	q	$p \lor q$
Т	Т	Т
Т	F	Т
F	Т	Т
F	F	F

Implications

Some common formulations:

p implies q whenever p is true q must be true If p then q q if p p is sufficient for q p only if q q is necessary for p

p	q	$p \rightarrow q$
Т	Т	Т
Т	F	F
F	Т	Т
F	F	Т

Steps:

- 1. Create propositional variables
- 2. Replace all propositions with created variables
- 3. Replace the operators

(a) If I am lifting weights this afternoon, then I do a warm-up exercise.

(b) If I am cold and going to bed or I am two-years old, then I carry a blanket.

Steps:

- 1. Create propositional variables
- 2. Replace all propositions with created variables
- 3. Replace the operators

a) If I am lifting weights this afternoon, then I do a warm-up exercise.

Steps:

- 1. Create propositional variables
- 2. Replace all propositions with created variables
- 3. Replace the operators

a) If I am lifting weights this afternoon, then I do a warm-up exercise.

Step 1 *p*: I am lifting weights this afternoon *q*: I do a warm-up exercise

Steps:

- 1. Create propositional variables
- 2. Replace all propositions with created variables
- 3. Replace the operators

a) If I am lifting weights this afternoon, then I do a warm-up exercise.

Step 1 *p*: I am lifting weights this afternoon *q*: I do a warm-up exercise

 $\begin{array}{l} \textbf{Step 2} \\ \textbf{If } p \textbf{ then } q \end{array}$

Steps:

- 1. Create propositional variables
- 2. Replace all propositions with created variables
- 3. Replace the operators

a) If I am lifting weights this afternoon, then I do a warm-up exercise.

Step 1 *p*: I am lifting weights this afternoon *q*: I do a warm-up exercise

 $\begin{array}{l} \textbf{Step 2} \\ \textbf{If } p \textbf{ then } q \end{array}$

Step 3 $p \rightarrow q$

Problem 1b

Steps:

- 1. Create propositional variables
- 2. Replace all propositions with created variables
- 3. Replace the operators

b) If I am cold and going to bed or I am two-years old, then I carry a blanket.

Work on this problem with the people around you, and then we'll go over it together!

Steps:

- 1. Create propositional variables
- 2. Replace all propositions with created variables
- 3. Replace the operators

b) If I am cold and going to bed or I am two-years old, then I carry a blanket.

Problem 2

- a) Whenever I walk my dog, I make new friends.
- b) I will drink coffee, if Starbucks is open or my coffeemaker works.
- c) Being a U.S. citizen and over 18 is sufficient to be eligible to vote.
- d) I can go home only if I have finished my homework.
- e) Having an internet connection is necessary to log onto zoom.
- f) I am a student because I attend university.

Work on parts (a), (c), and (f) with the people around you, and then we'll go over it together!

- 1. Create propositional variables
- 2. Replace all propositions with created variables
- 3. Replace the operators

a) Whenever I walk my dog, I make new friends.

- 1. Create propositional variables
- 2. Replace all propositions with created variables
- 3. Replace the operators

- c) Being a U.S. citizen and over 18 is sufficient to be eligible to vote.
- 1. Create propositional variables
- 2. Replace all propositions with created variables
- 3. Replace the operators

f) I am a student because I attend university.

- 1. Create propositional variables
- 2. Replace all propositions with created variables
- 3. Replace the operators

Problem 5

Problem 5 – Tea Time

Consider the following sentence:

If I am drinking tea then I am eating a cookie, or, if I am eating a cookie then I am drinking tea.

- a) Define propositional variables and translate the sentence into an expression in logical notation.
- b) Fill out a truth table for your expression.

Work on this problem with the people around you, and then we'll go over it together!

Problem 5 – Tea Time

If I am drinking tea then I am eating a cookie, or, if I am eating a cookie then I am drinking tea.

a) Define propositional variables and translate the sentence into an expression in logical notation.

Problem 5 – Tea Time

If I am drinking tea then I am eating a cookie, or, if I am eating a cookie then I am drinking tea.

b) Fill out a truth table for your expression.

p	q	p ightarrow q	q ightarrow p	

That's All, Folks!

Thanks for coming to section this week! Any questions?