CSE 311 Section 4

English Proofs & Set Theory

Administrivia

Announcements & Reminders

- HW2
 - If you think something was graded incorrectly, submit a regrade request!
- HW3 due tomorrow 10/21 @ 10PM on Gradescope
 - Use late days if you need them!
- HW4
 - Due Friday 10/28 @ 10pm

References

- Helpful reference sheets can be found on the course website!
 - https://courses.cs.washington.edu/courses/cse311/23wi/resources/
- How to LaTeX (found on Assignments page of website):
 - https://courses.cs.washington.edu/courses/cse311/23wi/assignments/HowToLaTeX.pdf
- Set Reference Sheet
 - https://courses.cs.washington.edu/courses/cse311/23wi/resources/reference-sets.pdf
- Number Theory Reference Sheet
 - https://courses.cs.washington.edu/courses/cse311/23wi/resources/reference-number-theory.pdf
- Plus more!

English Proofs

Writing a Proof (symbolically or in English)

- Don't just jump right in!
- Look at the claim, and make sure you know:
 - What every word in the claim means
 - What the claim as a whole means
- Translate the claim in predicate logic.
- Next, write down the Proof Skeleton:
 - Where to start
 - What your target is
- Then once you know what claim you are proving and your starting point and ending point, you can finally write the proof!

Helpful Tips for English Proofs

- Start by introducing your assumptions
 - Introduce variables with "let"
 - "Let x be an arbitrary prime number..."
 - Introduce assumptions with "suppose"
 - "Suppose that $y \in A \land y \notin B$..."
- When you supply a value for an existence proof, use "Consider"
 - "Consider x = 2..."
- **ALWAYS** state what type your variable is (integer, set, etc.)
- Universal Quantifier means variable must be arbitrary
- Existential Quantifier means variable can be specific

Problem 2 – Just the Setup

For each of these statements,

- Translate the sentence into predicate logic.
- Write the first few sentences and last few sentences of the English proof.
- a) The product of an even integer and an odd integer is even.
- b) There is an integer x such that $x^2 > 10$ and 3x is even.
- c) For every integer n, there is a prime number p greater than n.
- d) If $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$ for any sets A, B, C.

Problem 2 – Just the Setup

b) There is an integer x such that $x^2 > 10$ and 3x is even.

Problem 2 – Just the Setup

c) For every integer n, there is a prime number p greater than n.

Sets

Sets

- A set is an **unordered** group of **distinct** elements
 - Set variable names are capital letters, with lower-case letters for elements

Set Notation:

- \circ $a \in A$: "a is in A" or "a is an element of A"
- $A \subseteq B$: "A is a subset of B", every element of A is also in B
- Ø: "empty set", a unique set containing no elements
- \circ $\mathcal{P}(A)$: "power set of A", the set of all subsets of A including the empty set and A itself

Set Operators

- Subset: $A \subseteq B \equiv \forall x (x \in A \rightarrow x \in B)$
- Equality: $A = B \equiv \forall x (x \in A \leftrightarrow x \in B) \equiv A \subseteq B \land B \subseteq A$
- Union: $A \cup B = \{x : x \in A \lor x \in B\}$
- Intersection: $A \cap B = \{x : x \in A \land x \in B\}$
- Complement: $\overline{A} = \{x : x \notin A\}$
- Difference: $A \setminus B = \{x : x \in A \land x \notin B\}$
- Cartesian Product: $A \times B = \{(a, b) : a \in A \land b \in B\}$

Problem 3 – How Many Elements?

For each of these, how many elements are in the set? If the set has infinitely many elements, say ∞ .

- a) $A = \{1, 2, 3, 2\}$
- b) $B = \{\{\}, \{\{\}\}, \{\{\}, \{\}\}, \{\}\}, \{\}\}, \dots\}$
- c) $C = A \times (B \cup \{7\})$
- d) $D = \emptyset$
- e) $E = \{\emptyset\}$
- f) $F = \mathcal{P}(\{\emptyset\})$

Problem 3 - How Many Elements?

- a) $A = \{1, 2, 3, 2\}$
- b) $B = \{\{\}, \{\{\}\}, \{\{\}\}, \{\}\}, \{\{\}\}, \{\}\}, \dots\}$
- c) $C = A \times (B \cup \{7\})$
- d) $D = \emptyset$
- e) $E = \{\emptyset\}$
- f) $F = \mathcal{P}(\{\emptyset\})$

Set Proofs

Subset Proofs

One of the most common types of proofs you will be asked to write involving sets is a subset proof. That is, you will be asked to prove that $A \subseteq B$. We always approach these proofs with the same proof skeleton:

Let x be an arbitrary element of A, so $x \in A$.

 \dots some steps using set definitions to show that x must also be in B...

Thus, $x \in B$

Since x was arbitrary, $A \subseteq B$.

Set Equality Proofs

Another common type of set proof is proving that A = B. The trick here is that this is secretly just two subset proofs! We need to show both that $A \subseteq B$ and $B \subseteq A$. Again, we will always use the same proof skeleton:

Let x be an arbitrary element of A, so $x \in A$.

... Thus, $x \in B$

Since x was arbitrary, $A \subseteq B$.

Let y be an arbitrary element of B, so $y \in B$.

... Thus, $y \in A$

Since y was arbitrary, $B \subseteq A$.

As we have shown both that $A \subseteq B$ and $B \subseteq A$, therefore A = B.

Problem 4 – Set = Set

Prove the following set identities. Write both a formal inference proof and an English proof.

- a) Let the universal set be \mathcal{U} . Prove $A \cap \overline{B} \subseteq A \setminus B$ for any sets A, B.
- b) Prove that $(A \cap B) \times C \subseteq A \times (C \cup D)$ for any sets A, B, C, D.

Problem 4 – Set = Set

b) Prove that $(A \cap B) \times C \subseteq A \times (C \cup D)$ for any sets A, B, C, D.

Problem 5 – Set Equality

- a) Prove that $A \cap (A \cup B) = A$ for any sets A, B.
- b) Let \mathcal{U} be the universal set. Show that $\overline{X} = X$

Problem 5 – Set Equality

a) Prove that $A \cap (A \cup B) = A$ for any sets A, B.

Bonus: Inference Proofs

Inference Proofs

- New way of doing proofs:
 - Write down all the facts we know (givens)
 - Combine the things we know to derive new facts
 - Continue until what we want to show is a fact

Modus Ponens

- $\circ \quad [(p \to q) \land p] \to q \equiv T$
- o If you have an implication and its hypothesis as facts, you can get the conclusion

Direct Proof Rule

• Assume x and then eventually get y, you can conclude that $x \to y$

Inference Proof Example

Given $((p \rightarrow q) \land (q \rightarrow r))$, show that $(p \rightarrow r)$

1.	((p -	$\rightarrow q) \land$	(q -	$\rightarrow r))$
_				

2. $p \rightarrow q$ 3. $q \rightarrow r$

5. $p \rightarrow r$

4.1 *p*

4.2 q

4.3 r

Given

Eliminate ∧: 1

Eliminate Λ: 1

Assumption

Modus Ponens: 4.1, 2

Modus Ponens: 4.2, 3

Direct Proof Rule

Show that $\neg t \rightarrow s$ follows from $t \lor q, q \rightarrow r$ and $r \rightarrow s$

Show that $\neg t \rightarrow s$ follows from $t \lor q, q \rightarrow r$ and $r \rightarrow s$

1	+ \	10
1.	U	$\vee q$

2. $q \rightarrow r$ 3. $r \rightarrow s$

Given

Given

Given

?.
$$\neg t \rightarrow s$$

???

Show that $\neg t \rightarrow s$ follows from $t \lor q, q \rightarrow r$ and $r \rightarrow s$

- 1. $t \lor q$
- 2. $q \rightarrow r$
- 3. $r \rightarrow s$
 - $4.1 \qquad \neg t$

Given

Given

Given

Assumption

?.
$$\neg t \rightarrow s$$

Show that $\neg t \rightarrow s$ follows from $t \lor q, q \rightarrow r$ and $r \rightarrow s$

1.	$t \lor q$	
2.	$q \rightarrow r$	
3.	$r \rightarrow s$	
	4.1	$\neg t$
	4.2	a

Given
Given
Given
Assumption
Eliminate V: 1, 4.1

?.
$$\neg t \rightarrow s$$

Show that $\neg t \rightarrow s$ follows from $t \lor q, q \rightarrow r$ and $r \rightarrow s$

1.	$t \lor q$		
2.	$q \rightarrow r$		
3.	$r \rightarrow s$		
	4.1	$\neg t$	
	4.2	\boldsymbol{q}	
	4.3	r	

Given
Given
Given
Assumption
Eliminate V: 1, 4.1
Modus Ponens: 4.2, 2

?. $\neg t \rightarrow s$???

Show that $\neg t \rightarrow s$ follows from $t \lor q, q \rightarrow r$ and $r \rightarrow s$

1.	$t \lor q$		Given
2.	$q \rightarrow r$		Given
3.	$r \rightarrow s$		Given
	4.1	$\neg t$	Assumption
	4.2	q	Eliminate V: 1, 4.1
	4.3	r	Modus Ponens: 4.2,
	4.4	S	Modus Ponens: 4.3,
?.	$\neg t \rightarrow s$???

Show that $\neg t \rightarrow s$ follows from $t \lor q, q \rightarrow r$ and $r \rightarrow s$

1.	$t \lor q$		Gi
2.	$q \rightarrow r$		Gi
3.	$r \rightarrow s$		Gi
	4.1	$\neg t$	As
	4.2	q	Eli
	4.3	r	Mo
	4.4	S	Mo
5.	$\neg t \rightarrow s$		Di

Given Given Given

Assumption Eliminate V: 1, 4.1

Modus Ponens: 4.2, 2

Modus Ponens: 4.3, 3

Direct Proof Rule

That's All, Folks!

Thanks for coming to section this week!
Any questions?