CSE 311 Section 4

English Proofs & Set Theory

Administrivia

Announcements & Reminders

- HW2
 - If you think something was graded incorrectly, submit a regrade request!
- HW3 due tomorrow 10/21 @ 10PM on Gradescope
 - Use late days if you need them!
- HW4
 - Due Friday 10/28 @ 10pm

References

- Helpful reference sheets can be found on the course website!
 - <u>https://courses.cs.washington.edu/courses/cse311/23wi/resources/</u>
- How to LaTeX (found on Assignments page of website):
 - <u>https://courses.cs.washington.edu/courses/cse311/23wi/assignments/HowToLaTeX.pdf</u>
- Set Reference Sheet
 - <u>https://courses.cs.washington.edu/courses/cse311/23wi/resources/reference-sets.pdf</u>
- Number Theory Reference Sheet
 - <u>https://courses.cs.washington.edu/courses/cse311/23wi/resources/reference-number-theory.pdf</u>
- Plus more!

English Proofs

Writing a Proof (symbolically or in English)

- Don't just jump right in!
- Look at the **claim**, and make sure you know:
 - What every word in the claim means
 - What the claim as a whole means
- Translate the claim in predicate logic.
- Next, write down the **Proof Skeleton**:
 - Where to start
 - What your target is
- Then once you know what claim you are proving and your starting point and ending point, you can finally write the proof!

Helpful Tips for English Proofs

- Start by introducing your assumptions
 - Introduce variables with "let"
 - "Let x be an arbitrary prime number..."
 - Introduce assumptions with "suppose"
 - "Suppose that $y \in A \land y \notin B...$ "
- When you supply a value for an existence proof, use "Consider"
 - "Consider x = 2..."
- **ALWAYS** state what type your variable is (integer, set, etc.)
- Universal Quantifier means variable must be arbitrary
- Existential Quantifier means variable can be specific

For each of these statements,

- Translate the sentence into predicate logic.
- Write the first few sentences and last few sentences of the English proof.
- a) The product of an even integer and an odd integer is even.
- b) There is an integer x such that $x^2 > 10$ and 3x is even.
- c) For every integer *n*, there is a prime number *p* greater than *n*.
- d) If $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$ for any sets A, B, C.

Work on parts (b) and (c) with the people around you, and then we'll go over it together!

b) There is an integer x such that $x^2 > 10$ and 3x is even.

b) There is an integer x such that $x^2 > 10$ and 3x is even.

 $\exists x [\text{GreaterThan10}(x^2) \land \text{Even}(3x)]$

b) There is an integer x such that $x^2 > 10$ and 3x is even.

 $\exists x [\text{GreaterThan10}(x^2) \land \text{Even}(3x)]$

Consider x = 6.

• • • •

b) There is an integer x such that $x^2 > 10$ and 3x is even.

 $\exists x [GreaterThan 10(x^2) \land Even(3x)]$

Consider x = 6.

Then there exists some integer k such that $3 \cdot 6 = 2k$.

b) There is an integer x such that $x^2 > 10$ and 3x is even.

 $\exists x [\text{GreaterThan10}(x^2) \land \text{Even}(3x)]$

Consider x = 6.

Then there exists some integer k such that $3 \cdot 6 = 2k$. So $6^2 > 10$ and $3 \cdot 6$ is even. Hence, 6 is the desired x.

c) For every integer *n*, there is a prime number *p* greater than *n*.

c) For every integer *n*, there is a prime number *p* greater than *n*.

 $\forall x \exists y [Prime(y) \land GreaterThan(y, x)]$

c) For every integer *n*, there is a prime number *p* greater than *n*.

 $\forall x \exists y [Prime(y) \land GreaterThan(y, x)]$

Let x be an arbitrary integer.

c) For every integer *n*, there is a prime number *p* greater than *n*.

 $\forall x \exists y [Prime(y) \land GreaterThan(y, x)]$

Let x be an arbitrary integer. Consider y = p (this p is a specific prime)

• • • •

c) For every integer *n*, there is a prime number *p* greater than *n*.

```
\forall x \exists y [Prime(y) \land GreaterThan(y, x)]
```

```
Let x be an arbitrary integer.
Consider y = p (this p is a specific prime)
```

```
• • • •
```

```
So p is prime and p > x.
```

Since x was arbitrary, we have that every integer has a prime number that is greater than it.

Sets

Sets

- A set is an **unordered** group of **distinct** elements
 - Set variable names are capital letters, with lower-case letters for elements
- Set Notation:
 - $a \in A$: "a is in A" or "a is an element of A"
 - $A \subseteq B$: "*A* is a subset of *B*", every element of *A* is also in *B*
 - Ø: "empty set", a unique set containing no elements
 - $\mathcal{P}(A)$: "power set of A", the set of all subsets of A including the empty set and A itself

Set Operators

- Subset: $A \subseteq B \equiv \forall x (x \in A \rightarrow x \in B)$
- Equality:
- Union:
- Intersection:

- $A = B \equiv \forall x (x \in A \leftrightarrow x \in B) \equiv A \subseteq B \land B \subseteq A$
- $A \cup B = \{x \colon x \in A \lor x \in B\}$
- $A \cap B = \{x \colon x \in A \land x \in B\}$
- Complement:
- Difference:

- $A = \{x \colon x \notin A\}$
- $A \setminus B = \{x : x \in A \land x \notin B\}$
- Cartesian Product: $A \times B = \{(a, b) : a \in A \land b \in B\}$

For each of these, how many elements are in the set? If the set has infinitely many elements, say ∞.

- a) $A = \{1, 2, 3, 2\}$
- c) $C = A \times (B \cup \{7\})$
- d) $D = \emptyset$
- e) $E = \{\emptyset\}$
- f) $F = \mathcal{P}(\{\emptyset\})$

Work this problem with the people around you, and then we'll go over it together!

- a) $A = \{1, 2, 3, 2\}$
- b) $B = \{\{\}, \{\{\}\}, \{\{\}\}, \{\{\}\}, \{\}\}, \{\}, \{\}\}, \dots\}$
- c) $C = A \times (B \cup \{7\})$
- d) $D = \emptyset$
- e) $E = \{\emptyset\}$
- f) $F = \mathcal{P}(\{\emptyset\})$

- a) $A = \{1, 2, 3, 2\}$ 3, $A = \{1, 2, 3\}$
- b) $B = \{\{\}, \{\{\}\}, \{\{\}\}, \{\{\}\}, \{\}\}, \{\}, \{\}\}, \dots\}$
- c) $C = A \times (B \cup \{7\})$
- d) $D = \emptyset$
- e) $E = \{\emptyset\}$
- f) $F = \mathcal{P}(\{\emptyset\})$

- a) $A = \{1, 2, 3, 2\}$ 3, $A = \{1, 2, 3\}$
- b) $B = \{\{\}, \{\{\}\}, \{\{\}, \{\}\}, \{\}, \{\}, \{\}\}, \dots\}$ 2, $B = \{\emptyset, \{\emptyset\}\}$
- c) $C = A \times (B \cup \{7\})$
- d) $D = \emptyset$
- e) $E = \{\emptyset\}$
- f) $F = \mathcal{P}(\{\emptyset\})$

- a) $A = \{1, 2, 3, 2\}$ 3, $A = \{1, 2, 3\}$
- b) $B = \{\{\}, \{\{\}\}, \{\{\}, \{\}\}, \{\}, \{\}, \{\}\}, \dots\}$ 2, $B = \{\emptyset, \{\emptyset\}\}$
- c) $C = A \times (B \cup \{7\})$ 9, $C = \{1, 2, 3\} \times \{7, \emptyset, \{\emptyset\}\}$
- d) $D = \emptyset$
- e) $E = \{\emptyset\}$
- f) $F = \mathcal{P}(\{\emptyset\})$

- a) $A = \{1, 2, 3, 2\}$ 3, $A = \{1, 2, 3\}$
- b) $B = \{\{\}, \{\{\}\}, \{\{\}, \{\}\}, \{\}, \{\}\}, \dots\}$ 2, $B = \{\emptyset, \{\emptyset\}\}$
- c) $C = A \times (B \cup \{7\})$ 9, $C = \{1, 2, 3\} \times \{7, \emptyset, \{\emptyset\}\}$
- d) $D = \emptyset$ 0
- e) $E = \{\emptyset\}$
- f) $F = \mathcal{P}(\{\emptyset\})$

- a) $A = \{1, 2, 3, 2\}$ 3, $A = \{1, 2, 3\}$
- b) $B = \{\{\}, \{\{\}\}, \{\{\}, \{\}\}, \{\}, \{\}\}, \dots\}$ 2, $B = \{\emptyset, \{\emptyset\}\}$
- c) $C = A \times (B \cup \{7\})$ 9, $C = \{1, 2, 3\} \times \{7, \emptyset, \{\emptyset\}\}$
- d) $D = \emptyset$ 0
- e) $E = \{\emptyset\}$ **1**
- f) $F = \mathcal{P}(\{\emptyset\})$

- a) $A = \{1, 2, 3, 2\}$ 3, $A = \{1, 2, 3\}$
- b) $B = \{\{\}, \{\{\}\}, \{\{\}, \{\}\}, \{\}, \{\}, \{\}\}, \dots\}$ 2, $B = \{\emptyset, \{\emptyset\}\}$
- c) $C = A \times (B \cup \{7\})$ 9, $C = \{1, 2, 3\} \times \{7, \emptyset, \{\emptyset\}\}$
- d) $D = \emptyset$ 0
- e) $E = \{\emptyset\}$ 1
- f) $F = \mathcal{P}(\{\emptyset\})$ 2, $F = \{\emptyset, \{\emptyset\}\}$

Set Proofs

Subset Proofs

One of the most common types of proofs you will be asked to write involving sets is a subset proof. That is, you will be asked to prove that $A \subseteq B$. We always approach these proofs with the same proof skeleton:

Let x be an arbitrary element of A, so $x \in A$ some steps using set definitions to show that x must also be in B... Thus, $x \in B$ Since x was arbitrary, $A \subseteq B$.

Set Equality Proofs

Another common type of set proof is proving that A = B. The trick here is that this is secretly just two subset proofs! We need to show both that $A \subseteq B$ and $B \subseteq A$. Again, we will always use the same proof skeleton:

```
Let x be an arbitrary element of A, so x \in A.

... Thus, x \in B

Since x was arbitrary, A \subseteq B.

Let y be an arbitrary element of B, so y \in B.

... Thus, y \in A

Since y was arbitrary, B \subseteq A.

As we have shown both that A \subseteq B and B \subseteq A, therefore A = B.
```

Prove the following set identities. Write both a formal inference proof and an English proof.

- a) Let the universal set be \mathcal{U} . Prove $A \cap \overline{B} \subseteq A \setminus B$ for any sets A, B.
- b) Prove that $(A \cap B) \times C \subseteq A \times (C \cup D)$ for any sets A, B, C, D.

Work on part (b) with the people around you, and then we'll go over it together!

b) Prove that $(A \cap B) \times C \subseteq A \times (C \cup D)$ for any sets A, B, C, D.

. . .

b) Prove that $(A \cap B) \times C \subseteq A \times (C \cup D)$ for any sets A, B, C, D.

Let x be an arbitrary element of $(A \cap B) \times C$.

Since x was an arbitrary element of $(A \cap B) \times C$ we have proved that $(A \cap B) \times C \subseteq A \times (C \cup D)$ as required.

b) Prove that $(A \cap B) \times C \subseteq A \times (C \cup D)$ for any sets A, B, C, D.

Let x be an arbitrary element of $(A \cap B) \times C$. Then, by definition of Cartesian product, x must be of the form (y, z) where $y \in A \cap B$ and $z \in C$.

```
...
Since x was an arbitrary element of (A \cap B) \times C we have proved that (A \cap B) \times C \subseteq A \times (C \cup D) as required.
```

. . .

b) Prove that $(A \cap B) \times C \subseteq A \times (C \cup D)$ for any sets A, B, C, D.

Let x be an arbitrary element of $(A \cap B) \times C$. Then, by definition of Cartesian product, x must be of the form (y, z) where $y \in A \cap B$ and $z \in C$. Since $y \in A \cap B$, $y \in A$ and $y \in B$ by definition of \cap ; in particular, all we care about is that $y \in A$.

Since x was an arbitrary element of $(A \cap B) \times C$ we have proved that $(A \cap B) \times C \subseteq A \times (C \cup D)$ as required.

b) Prove that $(A \cap B) \times C \subseteq A \times (C \cup D)$ for any sets A, B, C, D.

Let x be an arbitrary element of $(A \cap B) \times C$. Then, by definition of Cartesian product, x must be of the form (y, z) where $y \in A \cap B$ and $z \in C$.

```
Since y \in A \cap B, y \in A and y \in B by definition of \cap; in particular, all we care about is that y \in A.
```

```
Since z \in C, by definition of \cup, we also have z \in C \cup D.
```

```
Since x was an arbitrary element of (A \cap B) \times C we have proved that (A \cap B) \times C \subseteq A \times (C \cup D) as required.
```

b) Prove that $(A \cap B) \times C \subseteq A \times (C \cup D)$ for any sets A, B, C, D.

Let x be an arbitrary element of $(A \cap B) \times C$.

Then, by definition of Cartesian product, x must be of the form (y, z) where $y \in A \cap B$ and $z \in C$.

Since $y \in A \cap B$, $y \in A$ and $y \in B$ by definition of \cap ; in particular, all we care about is that $y \in A$.

Since $z \in C$, by definition of \cup , we also have $z \in C \cup D$.

Therefore since $y \in A$ and $z \in C \cup D$, by definition of Cartesian product we have $x = (y, z) \in A \times (C \cup D)$.

Since x was an arbitrary element of $(A \cap B) \times C$ we have proved that $(A \cap B) \times C \subseteq A \times (C \cup D)$ as required.

- a) Prove that $A \cap (A \cup B) = A$ for any sets A, B.
- b) Let \mathcal{U} be the universal set. Show that $\overline{X} = X$

Work on part (a) with the people around you, and then we'll go over it together!

a) Prove that $A \cap (A \cup B) = A$ for any sets A, B.

a) Prove that $A \cap (A \cup B) = A$ for any sets A, B.

Let x be an arbitrary element of $A \cap (A \cup B)$.

```
Since x was arbitrary, A \cap (A \cup B) \subseteq A.
```

Now let y be an arbitrary member of A. Then $y \in A$. So certainly $y \in A$ or $y \in B$ Since y was arbitrary, $A \subseteq A \cap (A \cup B)$.

a) Prove that $A \cap (A \cup B) = A$ for any sets A, B.

Let x be an arbitrary element of $A \cap (A \cup B)$. Then by definition of intersection, $x \in A$ and $x \in A \cup B$. So certainly, $x \in A$. Since x was arbitrary, $A \cap (A \cup B) \subseteq A$.

Now let y be an arbitrary member of A. Then $y \in A$. So certainly $y \in A$ or $y \in B$ Since y was arbitrary, $A \subseteq A \cap (A \cup B)$.

a) Prove that $A \cap (A \cup B) = A$ for any sets A, B.

Let x be an arbitrary element of $A \cap (A \cup B)$. Then by definition of intersection, $x \in A$ and $x \in A \cup B$. So certainly, $x \in A$. Since x was arbitrary, $A \cap (A \cup B) \subseteq A$.

Now let y be an arbitrary member of A. Then $y \in A$. So certainly $y \in A$ or $y \in B$. Then by definition of union, $y \in A \cup B$.

Since y was arbitrary, $A \subseteq A \cap (A \cup B)$.

. . .

a) Prove that $A \cap (A \cup B) = A$ for any sets A, B.

Let x be an arbitrary element of $A \cap (A \cup B)$. Then by definition of intersection, $x \in A$ and $x \in A \cup B$. So certainly, $x \in A$. Since x was arbitrary, $A \cap (A \cup B) \subseteq A$.

Now let y be an arbitrary member of A. Then $y \in A$. So certainly $y \in A$ or $y \in B$. Then by definition of union, $y \in A \cup B$. Since $y \in A$ and $y \in A \cup B$, then by definition of intersection, $y \in A \cap (A \cup B)$. Since y was arbitrary, $A \subseteq A \cap (A \cup B)$.

Bonus: Inference Proofs

Inference Proofs

- New way of doing proofs:
 - Write down all the facts we know (givens)
 - Combine the things we know to derive new facts
 - Continue until what we want to show is a fact

Modus Ponens

- $\circ \quad [(p \to q) \land p] \to q \equiv T$
- If you have an implication and its hypothesis as facts, you can get the conclusion

• Direct Proof Rule

• Assume x and then eventually get y, you can conclude that $x \rightarrow y$

Inference Proof Example

Given $((p \rightarrow q) \land (q \rightarrow r))$, show that $(p \rightarrow r)$

1.	$((p \to q) \land (q \to r))$
2.	p ightarrow q
3.	$q \rightarrow r$
	4.1 <i>p</i>
	4.2 <i>q</i>
	4.3 <i>r</i>
5.	$p \rightarrow r$

Given Eliminate ∧: 1 Eliminate ∧: 1 Assumption Modus Ponens: 4.1, 2 Modus Ponens: 4.2, 3 Direct Proof Rule

Show that $\neg t \rightarrow s$ follows from $t \lor q, q \rightarrow r$ and $r \rightarrow s$

Work on this problem with the people around you, and then we'll go over it together!

Show that $\neg t \rightarrow s$ follows from $t \lor q, q \rightarrow r$ and $r \rightarrow s$

1.	$t \lor q$	Given
2.	q ightarrow r	Given
3.	$\gamma \rightarrow s$	Given

 $?. \quad \neg t \to s \qquad \qquad ???$

Show that $\neg t \rightarrow s$ follows from $t \lor q, q \rightarrow r$ and $r \rightarrow s$

1.	$t \lor q$		Given
2.	q ightarrow r		Given
3.	$r \rightarrow s$		Given
	4.1	$\neg t$	Assumption

?. $\neg t \rightarrow s$???

Show that $\neg t \rightarrow s$ follows from $t \lor q, q \rightarrow r$ and $r \rightarrow s$

Given
Given
Given
Assumption
Eliminate V: 1, 4.1

?. $\neg t \rightarrow s$???

Show that $\neg t \rightarrow s$ follows from $t \lor q, q \rightarrow r$ and $r \rightarrow s$

1.	$t \lor q$		Given
2.	q ightarrow r		Given
3.	$r \rightarrow s$		Given
	4.1	$\neg t$	Assumption
	4.2	q	Eliminate V: 1, 4.1
	4.3	r	Modus Ponens: 4.2, 2
?.	$\neg t \rightarrow s$???

Show that $\neg t \rightarrow s$ follows from $t \lor q, q \rightarrow r$ and $r \rightarrow s$

1.	$t \lor q$		Given
2.	q ightarrow r		Given
3.	$r \rightarrow s$		Given
	4.1	$\neg t$	Assumption
	4.2	q	Eliminate V: 1, 4.1
	4.3	r	Modus Ponens: 4.2, 2
	4.4	S	Modus Ponens: 4.3, 3
?.	$\neg t \rightarrow s$???

Show that $\neg t \rightarrow s$ follows from $t \lor q, q \rightarrow r$ and $r \rightarrow s$

1.	$t \lor q$		Given
2.	q ightarrow r		Given
3.	$r \rightarrow s$		Given
	4.1	$\neg t$	Assumption
	4.2	q	Eliminate V: 1, 4.1
	4.3	r	Modus Ponens: 4.2, 2
	4.4	S	Modus Ponens: 4.3, 3
5.	$\neg t \rightarrow s$		Direct Proof Rule

That's All, Folks!

Thanks for coming to section this week! Any questions?