
CSE 311 Section 5

Number Theory & Induction

Administrivia

Announcements & Reminders

● HW3

○ If you think something was graded incorrectly, submit a regrade request!

● HW4 due tomorrow 10PM on Gradescope

○ Use late days if you need them!

● HW5

○ 2 parts!

○ BOTH PARTS due Wednesday 11/8 @ 10pm

○ You have extra time on this homework (1.5 weeks)

Greatest Common Divisor

Some Definitions

● Greatest Common Divisor (GCD):

○ The Greatest Common Divisor of 𝑎 and 𝑏 (gcd(𝑎, 𝑏)) is the

largest integer 𝑐 such that 𝑐|𝑎 and 𝑐|𝑏

● Multiplicative Inverse:

○ The multiplicative inverse of 𝑎 (mod 𝑛) is an integer 𝑏 such that

𝑎𝑏 ≡ 1 (mod 𝑛)

Problem 1 – Warm-Up

a) Calculate gcd(100, 50).

b) Calculate gcd(17, 31)

c) Find the multiplicative inverse of 6 (mod 7).

d) Does 49 have a multiplicative inverse (mod 7)?

Try this problem with the people around you, and then we’ll go over it together!

Problem 1 – Warm-Up

a) Calculate gcd(100, 50).

b) Calculate gcd(17, 31)

c) Find the multiplicative inverse of 6 (mod 7).

d) Does 49 have a multiplicative inverse (mod 7)?

Problem 1 – Warm-Up

a) Calculate gcd(100, 50).

b) Calculate gcd(17, 31)

c) Find the multiplicative inverse of 6 (mod 7).

d) Does 49 have a multiplicative inverse (mod 7)?

50

Problem 1 – Warm-Up

a) Calculate gcd(100, 50).

b) Calculate gcd(17, 31)

c) Find the multiplicative inverse of 6 (mod 7).

d) Does 49 have a multiplicative inverse (mod 7)?

50

1

Problem 1 – Warm-Up

a) Calculate gcd(100, 50).

b) Calculate gcd(17, 31)

c) Find the multiplicative inverse of 6 (mod 7).

d) Does 49 have a multiplicative inverse (mod 7)?

50

1

6

Problem 1 – Warm-Up

a) Calculate gcd(100, 50).

b) Calculate gcd(17, 31)

c) Find the multiplicative inverse of 6 (mod 7).

d) Does 49 have a multiplicative inverse (mod 7)?

50

1

6

It does not. Intuitively, this is because 49x for any x is going to be 0 mod 7,
which means it can never be 1.

Extended Euclidean Algorithm

Finding GCD

GCD Facts:

If 𝑎 and 𝑏 are positive

integers, then:

gcd(𝑎, 𝑏) = gcd(𝑏, 𝑎%𝑏)

gcd 𝑎, 0 = 𝑎

public int GCD(int m, int n){
 if(m<n){
 int temp = m;
 m=n;
 n=temp;
 }
 while(n != 0) {
 int rem = m % n;
 m=n;
 n=temp;
 }
 return m;
}

Euclid’s Algorithm

gcd(660,126)

gcd(𝑎, 𝑏) = gcd(𝑏, 𝑎%𝑏)

Euclid’s Algorithm

gcd(660,126) = gcd(126, 660 % 126) = gcd(126, 30)

gcd(𝑎, 𝑏) = gcd(𝑏, 𝑎%𝑏)

Euclid’s Algorithm

gcd(660,126) = gcd(126, 660 % 126) = gcd(126, 30)

 = gcd(30, 126 % 30) = gcd(30, 6)

gcd(𝑎, 𝑏) = gcd(𝑏, 𝑎%𝑏)

Euclid’s Algorithm

gcd(660,126) = gcd(126, 660 % 126) = gcd(126, 30)

 = gcd(30, 126 % 30) = gcd(30, 6)

 = gcd(6, 30 % 6) = gcd(6, 0)

gcd(𝑎, 𝑏) = gcd(𝑏, 𝑎%𝑏)

Euclid’s Algorithm

gcd(660,126) = gcd(126, 660 % 126) = gcd(126, 30)

 = gcd(30, 126 % 30) = gcd(30, 6)

 = gcd(6, 30 % 6) = gcd(6, 0)

 = 6

gcd(𝑎, 𝑏) = gcd(𝑏, 𝑎%𝑏)

Euclid’s Algorithm

gcd(660,126) = gcd(126, 660 % 126) = gcd(126, 30)

 = gcd(30, 126 % 30) = gcd(30, 6)

 = gcd(6, 30 % 6) = gcd(6, 0)

 = 6

Tableau form

660 = 5 ⋅ 126 + 30

126 = 4 ⋅ 30 + 6

30 = 5 ⋅ 6 + 0

gcd(𝑎, 𝑏) = gcd(𝑏, 𝑎%𝑏)

Bézout’s Theorem

● Bézout’s Theorem:

○ If 𝑎 and 𝑏 are positive integers, then there exist integers 𝑠 and 𝑡

such that

gcd(𝑎, 𝑏) = 𝑠𝑎 + 𝑡𝑏

● We’re not going to prove this theorem in section though,

because it’s hard and ugly

Extended Euclidean Algorithm

Bézout’s Theorem tells us that gcd(𝑎, 𝑏) = 𝑠𝑎 + 𝑡𝑏.

To find the 𝑠, 𝑡 we can use the Extended Euclidean Algorithm.

● Step 1: compute gcd(𝑎, 𝑏); keep tableau information

● Step 2: solve all equations for the remainder

● Step 3: substitute backward

Extended Euclidean Algorithm
● Compute 𝒈𝒄𝒅(𝒂, 𝒃); keep

tableau information

● Solve all equations for the

remainder

● Substitute backwardgcd(35,27)

Extended Euclidean Algorithm
● Compute 𝒈𝒄𝒅(𝒂, 𝒃); keep

tableau information

● Solve all equations for the

remainder

● Substitute backwardgcd(35,27) = gcd(27, 35%27) = gcd(27,8)

Extended Euclidean Algorithm
● Compute 𝒈𝒄𝒅(𝒂, 𝒃); keep

tableau information

● Solve all equations for the

remainder

● Substitute backwardgcd(35,27) = gcd(27, 35%27) = gcd(27,8)

 = gcd(8, 27%8) = gcd(8, 3)

Extended Euclidean Algorithm
● Compute 𝒈𝒄𝒅(𝒂, 𝒃); keep

tableau information

● Solve all equations for the

remainder

● Substitute backwardgcd(35,27) = gcd(27, 35%27) = gcd(27,8)

 = gcd(8, 27%8) = gcd(8, 3)

 = gcd(3, 8%3) = gcd(3, 2)

Extended Euclidean Algorithm
● Compute 𝒈𝒄𝒅(𝒂, 𝒃); keep

tableau information

● Solve all equations for the

remainder

● Substitute backwardgcd(35,27) = gcd(27, 35%27) = gcd(27,8)

 = gcd(8, 27%8) = gcd(8, 3)

 = gcd(3, 8%3) = gcd(3, 2)

 = gcd(2, 3%2) = gcd(2,1)

Extended Euclidean Algorithm
● Compute 𝒈𝒄𝒅(𝒂, 𝒃); keep

tableau information

● Solve all equations for the

remainder

● Substitute backwardgcd(35,27) = gcd(27, 35%27) = gcd(27,8)

 = gcd(8, 27%8) = gcd(8, 3)

 = gcd(3, 8%3) = gcd(3, 2)

 = gcd(2, 3%2) = gcd(2,1)

 = gcd(1, 2%1) = gcd(1,0)

Extended Euclidean Algorithm
● Compute 𝒈𝒄𝒅(𝒂, 𝒃); keep

tableau information

● Solve all equations for the

remainder

● Substitute backward

35 = 1∙27 + 8

27 = 3∙8 + 3

8 = 2∙3 + 2

3 = 1∙2 + 1

gcd(35,27) = gcd(27, 35%27) = gcd(27,8)

 = gcd(8, 27%8) = gcd(8, 3)

 = gcd(3, 8%3) = gcd(3, 2)

 = gcd(2, 3%2) = gcd(2,1)

 = gcd(1, 2%1) = gcd(1,0)

Extended Euclidean Algorithm
● Compute 𝑔𝑐𝑑(𝑎, 𝑏); keep

tableau information

● Solve all equations for the

remainder

● Substitute backward

35 = 1∙27 + 8

27 = 3∙8 + 3

8 = 2∙3 + 2

3 = 1∙2 + 1

Extended Euclidean Algorithm
● Compute 𝑔𝑐𝑑(𝑎, 𝑏); keep

tableau information

● Solve all equations for the

remainder

● Substitute backward

8 = 35 - 1∙2735 = 1∙27 + 8

27 = 3∙8 + 3

8 = 2∙3 + 2

3 = 1∙2 + 1

Extended Euclidean Algorithm
● Compute 𝑔𝑐𝑑(𝑎, 𝑏); keep

tableau information

● Solve all equations for the

remainder

● Substitute backward

8 = 35 - 1∙27

3 = 27 - 3∙8

35 = 1∙27 + 8

27 = 3∙8 + 3

8 = 2∙3 + 2

3 = 1∙2 + 1

Extended Euclidean Algorithm
● Compute 𝑔𝑐𝑑(𝑎, 𝑏); keep

tableau information

● Solve all equations for the

remainder

● Substitute backward

8 = 35 - 1∙27

3 = 27 - 3∙8

2 = 8 - 2∙3

35 = 1∙27 + 8

27 = 3∙8 + 3

8 = 2∙3 + 2

3 = 1∙2 + 1

Extended Euclidean Algorithm
● Compute 𝑔𝑐𝑑(𝑎, 𝑏); keep

tableau information

● Solve all equations for the

remainder

● Substitute backward

8 = 35 - 1∙27

3 = 27 - 3∙8

2 = 8 - 2∙3

1 = 3 - 1∙2

35 = 1∙27 + 8

27 = 3∙8 + 3

8 = 2∙3 + 2

3 = 1∙2 + 1

Extended Euclidean Algorithm
● Compute 𝑔𝑐𝑑(𝑎, 𝑏); keep

tableau information

● Solve all equations for the

remainder

● Substitute backward
8 = 35 - 1∙27

3 = 27 - 3∙8

2 = 8 - 2∙3

1 = 3 - 1∙2

Extended Euclidean Algorithm
● Compute 𝑔𝑐𝑑(𝑎, 𝑏); keep

tableau information

● Solve all equations for the

remainder

● Substitute backward
8 = 35 - 1∙27

3 = 27 - 3∙8

2 = 8 - 2∙3

1 = 3 - 1∙2
1 = 3 - 1∙2

Extended Euclidean Algorithm
● Compute 𝑔𝑐𝑑(𝑎, 𝑏); keep

tableau information

● Solve all equations for the

remainder

● Substitute backward
8 = 35 - 1∙27

3 = 27 - 3∙8

2 = 8 - 2∙3

1 = 3 - 1∙2
1 = 3 - 1∙2

 = 3 - 1∙(8 – 2∙3)

Extended Euclidean Algorithm
● Compute 𝑔𝑐𝑑(𝑎, 𝑏); keep

tableau information

● Solve all equations for the

remainder

● Substitute backward
8 = 35 - 1∙27

3 = 27 - 3∙8

2 = 8 - 2∙3

1 = 3 - 1∙2
1 = 3 - 1∙2

 = 3 - 1∙(8 – 2∙3)

 = -1∙8 + 3∙3

Extended Euclidean Algorithm
● Compute 𝑔𝑐𝑑(𝑎, 𝑏); keep

tableau information

● Solve all equations for the

remainder

● Substitute backward
8 = 35 - 1∙27

3 = 27 - 3∙8

2 = 8 - 2∙3

1 = 3 - 1∙2
1 = 3 - 1∙2

 = 3 - 1∙(8 – 2∙3)

 = -1∙8 + 3∙3

 = -1∙8 + 3(27 - 3∙8)

Extended Euclidean Algorithm
● Compute 𝑔𝑐𝑑(𝑎, 𝑏); keep

tableau information

● Solve all equations for the

remainder

● Substitute backward
8 = 35 - 1∙27

3 = 27 - 3∙8

2 = 8 - 2∙3

1 = 3 - 1∙2
1 = 3 - 1∙2

 = 3 - 1∙(8 – 2∙3)

 = -1∙8 + 3∙3

 = -1∙8 + 3(27 - 3∙8)

 = 3∙27 - 10∙8

Extended Euclidean Algorithm
● Compute 𝑔𝑐𝑑(𝑎, 𝑏); keep

tableau information

● Solve all equations for the

remainder

● Substitute backward
8 = 35 - 1∙27

3 = 27 - 3∙8

2 = 8 - 2∙3

1 = 3 - 1∙2
1 = 3 - 1∙2

 = 3 - 1∙(8 – 2∙3)

 = -1∙8 + 3∙3

 = -1∙8 + 3(27 - 3∙8)

 = 3∙27 - 10∙8

 = 3∙27 – 10(35 - 1∙27)

Extended Euclidean Algorithm
● Compute 𝑔𝑐𝑑(𝑎, 𝑏); keep

tableau information

● Solve all equations for the

remainder

● Substitute backward
8 = 35 - 1∙27

3 = 27 - 3∙8

2 = 8 - 2∙3

1 = 3 - 1∙2
1 = 3 - 1∙2

 = 3 - 1∙(8 – 2∙3)

 = -1∙8 + 3∙3

 = -1∙8 + 3(27 - 3∙8)

 = 3∙27 - 10∙8

 = 3∙27 – 10(35 - 1∙27)

 = 13∙27 - 10∙35

Extended Euclidean Algorithm
● Compute 𝑔𝑐𝑑(𝑎, 𝑏); keep

tableau information

● Solve all equations for the

remainder

● Substitute backward
8 = 35 - 1∙27

3 = 27 - 3∙8

2 = 8 - 2∙3

1 = 3 - 1∙2
1 = 3 - 1∙2

 = 3 - 1∙(8 – 2∙3)

 = -1∙8 + 3∙3

 = -1∙8 + 3(27 - 3∙8)

 = 3∙27 - 10∙8

 = 3∙27 – 10(35 - 1∙27)

 = 13∙27 - 10∙35

When substituting back, you

keep the larger of 𝑚, 𝑛 and the

number you just substituted.

Don’t simplify further! (or

you’ll lose the form you need)

Problem 2 – Extended Euclidean Algorithm

a) Find the multiplicative inverse 𝑦 of 7 mod 33. That is, find 𝑦 such that
7𝑦 ≡ 1 (𝑚𝑜𝑑 33). You should use the extended Euclidean Algorithm. Your
answer should be in the range 0 ≤ y < 33.

b) Now, solve 7𝑧 ≡ 2 (mod 33) for all of its integer solutions 𝑧.

Try this problem with the people around you, and then we’ll go over it together!

Problem 2 – Extended Euclidean Algorithm
a) Find the multiplicative inverse 𝑦 of 7 mod 33. That is, find 𝑦 such that 7𝑦 ≡ 1 (𝑚𝑜𝑑 33). You

should use the extended Euclidean Algorithm. Your answer should be in the range 0 ≤ y < 33.

Problem 2 – Extended Euclidean Algorithm
a) Find the multiplicative inverse 𝑦 of 7 mod 33. That is, find 𝑦 such that 7𝑦 ≡ 1 (𝑚𝑜𝑑 33). You

should use the extended Euclidean Algorithm. Your answer should be in the range 0 ≤ y < 33.

First, we find the gcd:
gcd(33,7) = gcd(7,5) 33 = 7 • 4 + 5
 = gcd(5,2) 7 = 5 • 1 + 2
 = gcd(2,1) 5 = 2 • 2 + 1
 = gcd(1,0) 2 = 1 • 2 + 0

Problem 2 – Extended Euclidean Algorithm
a) Find the multiplicative inverse 𝑦 of 7 mod 33. That is, find 𝑦 such that 7𝑦 ≡ 1 (𝑚𝑜𝑑 33). You

should use the extended Euclidean Algorithm. Your answer should be in the range 0 ≤ y < 33.

First, we find the gcd:
gcd(33,7) = gcd(7,5) 33 = 7 • 4 + 5
 = gcd(5,2) 7 = 5 • 1 + 2
 = gcd(2,1) 5 = 2 • 2 + 1
 = gcd(1,0) 2 = 1 • 2 + 0

Next, we re-arrange the equations
by solving for the remainder:
 1 = 5 − 2 • 2 (6)
 2 = 7 − 5 • 1 (7)
 5 = 33 − 7 • 4

Problem 2 – Extended Euclidean Algorithm
a) Find the multiplicative inverse 𝑦 of 7 mod 33. That is, find 𝑦 such that 7𝑦 ≡ 1 (𝑚𝑜𝑑 33). You

should use the extended Euclidean Algorithm. Your answer should be in the range 0 ≤ y < 33.

First, we find the gcd:
gcd(33,7) = gcd(7,5) 33 = 7 • 4 + 5
 = gcd(5,2) 7 = 5 • 1 + 2
 = gcd(2,1) 5 = 2 • 2 + 1
 = gcd(1,0) 2 = 1 • 2 + 0

Next, we re-arrange the equations
by solving for the remainder:
 1 = 5 − 2 • 2 (6)
 2 = 7 − 5 • 1 (7)
 5 = 33 − 7 • 4

Now, we backward substitute into the boxed numbers using
the equations:
 1 = 5 − 2 • 2
 = 5 − (7 − 5 • 1) • 2
 = 3 • 5 − 7 • 2
 = 3 • (33 − 7 • 4) − 7 • 2
 = 33 • 3 + 7 • −14

Problem 2 – Extended Euclidean Algorithm
a) Find the multiplicative inverse 𝑦 of 7 mod 33. That is, find 𝑦 such that 7𝑦 ≡ 1 (𝑚𝑜𝑑 33). You

should use the extended Euclidean Algorithm. Your answer should be in the range 0 ≤ y < 33.

First, we find the gcd:
gcd(33,7) = gcd(7,5) 33 = 7 • 4 + 5
 = gcd(5,2) 7 = 5 • 1 + 2
 = gcd(2,1) 5 = 2 • 2 + 1
 = gcd(1,0) 2 = 1 • 2 + 0

Next, we re-arrange the equations
by solving for the remainder:
 1 = 5 − 2 • 2 (6)
 2 = 7 − 5 • 1 (7)
 5 = 33 − 7 • 4

Now, we backward substitute into the boxed numbers using
the equations:
 1 = 5 − 2 • 2
 = 5 − (7 − 5 • 1) • 2
 = 3 • 5 − 7 • 2
 = 3 • (33 − 7 • 4) − 7 • 2
 = 33 • 3 + 7 • −14

So, 1 = 33 • 3 + 7 • −14.
Thus, 33 − 14 = 19 is the
multiplicative inverse of
7 mod 33

Problem 2 – Extended Euclidean Algorithm

b) Now, solve 7𝑧 ≡ 2 (mod 33) for all of its integer solutions 𝑧.

Problem 2 – Extended Euclidean Algorithm

b) Now, solve 7𝑧 ≡ 2 (mod 33) for all of its integer solutions 𝑧.

If 7y ≡ 1(mod 33), then 2 · 7y ≡ 2(mod 33).

Problem 2 – Extended Euclidean Algorithm

b) Now, solve 7𝑧 ≡ 2 (mod 33) for all of its integer solutions 𝑧.

If 7y ≡ 1(mod 33), then 2 · 7y ≡ 2(mod 33).

So, z ≡ 2 · 19(mod 33) ≡ 5(mod 33). This means that the set of
solutions is {5 + 33k | k ∈ Z}

Number Theory

Some Definitions

● Divides:

○ For 𝑎, 𝑏 ∈ ℤ: 𝑎 ∣ 𝑏 iff ∃ 𝑘 ∈ ℤ 𝑏 = 𝑘𝑎

○ For integers 𝑎 and 𝑏, we say 𝑎 divides 𝑏 if and only if there exists

an integer 𝑘 such that 𝑏 = 𝑘𝑎

● Congruence Modulo:

○ For 𝑎, 𝑏 ∈ ℤ, 𝑚 ∈ ℤ+: 𝑎 ≡ 𝑏 (mod 𝑚) iff 𝑚 ∣ (𝑏 − 𝑎)

○ For integers 𝑎 and 𝑏 and positive integer 𝑚, we say 𝑎 is

congruent to 𝑏 modulo 𝑚 if and only if 𝑚 divides 𝑏 − 𝑎

Problem 5 – Modular Arithmetic

a) Prove that if 𝑎 ∣ 𝑏 and 𝑏 ∣ 𝑎, where 𝑎 and 𝑏 are integers, then 𝑎 = 𝑏 or
𝑎 = −𝑏.

b) Prove that if 𝑛 ∣ 𝑚, where 𝑛 and 𝑚 are integers greater than 1, and if
𝑎 ≡ 𝑏 (mod 𝑚), where 𝑎 and 𝑏 are integers, then 𝑎 ≡ 𝑏 (mod 𝑛).

Lets walk through part (a) together.

Problem 5 – Modular Arithmetic

a) Prove that if 𝑎 ∣ 𝑏 and 𝑏 ∣ 𝑎, where 𝑎 and 𝑏 are integers, then 𝑎 = 𝑏 or
𝑎 = −𝑏.

Suppose that 𝑎 ∣ 𝑏 and 𝑏 ∣ 𝑎, where 𝑎, 𝑏 are integers.
…

Therefore, it follows that 𝑎 = −𝑏 or 𝑎 = 𝑏.

Start with your
proof skeleton!

Problem 5 – Modular Arithmetic

a) Prove that if 𝑎 ∣ 𝑏 and 𝑏 ∣ 𝑎, where 𝑎 and 𝑏 are integers, then 𝑎 = 𝑏 or
𝑎 = −𝑏.

Suppose that 𝑎 ∣ 𝑏 and 𝑏 ∣ 𝑎, where 𝑎, 𝑏 are integers.

By the definition of divides, we have 𝑎 ≠ 0, 𝑏 ≠ 0 and 𝑏 = 𝑘𝑎, 𝑎 = 𝑗𝑏 for some integers
𝑘, 𝑗.
…

Therefore, it follows that 𝑎 = −𝑏 or 𝑎 = 𝑏.

Problem 5 – Modular Arithmetic

a) Prove that if 𝑎 ∣ 𝑏 and 𝑏 ∣ 𝑎, where 𝑎 and 𝑏 are integers, then 𝑎 = 𝑏 or
𝑎 = −𝑏.

Suppose that 𝑎 ∣ 𝑏 and 𝑏 ∣ 𝑎, where 𝑎, 𝑏 are integers.

By the definition of divides, we have 𝑎 ≠ 0, 𝑏 ≠ 0 and 𝑏 = 𝑘𝑎, 𝑎 = 𝑗𝑏 for some integers
𝑘, 𝑗.
Combining these equations, we see that 𝑎 = 𝑗(𝑘𝑎).
…

Therefore, it follows that 𝑎 = −𝑏 or 𝑎 = 𝑏.

Problem 5 – Modular Arithmetic

a) Prove that if 𝑎 ∣ 𝑏 and 𝑏 ∣ 𝑎, where 𝑎 and 𝑏 are integers, then 𝑎 = 𝑏 or
𝑎 = −𝑏.

Suppose that 𝑎 ∣ 𝑏 and 𝑏 ∣ 𝑎, where 𝑎, 𝑏 are integers.

By the definition of divides, we have 𝑎 ≠ 0, 𝑏 ≠ 0 and 𝑏 = 𝑘𝑎, 𝑎 = 𝑗𝑏 for some integers
𝑘, 𝑗.
Combining these equations, we see that 𝑎 = 𝑗(𝑘𝑎).

Then, dividing both sides by 𝑎, we get 1 = 𝑗𝑘. So,
1

𝑗
= 𝑘.

…

Therefore, it follows that 𝑎 = −𝑏 or 𝑎 = 𝑏.

Problem 5 – Modular Arithmetic

a) Prove that if 𝑎 ∣ 𝑏 and 𝑏 ∣ 𝑎, where 𝑎 and 𝑏 are integers, then 𝑎 = 𝑏 or
𝑎 = −𝑏.

Suppose that 𝑎 ∣ 𝑏 and 𝑏 ∣ 𝑎, where 𝑎, 𝑏 are integers.

By the definition of divides, we have 𝑎 ≠ 0, 𝑏 ≠ 0 and 𝑏 = 𝑘𝑎, 𝑎 = 𝑗𝑏 for some integers
𝑘, 𝑗.
Combining these equations, we see that 𝑎 = 𝑗(𝑘𝑎).

Then, dividing both sides by 𝑎, we get 1 = 𝑗𝑘. So,
1

𝑗
= 𝑘.

Note that 𝑗 and 𝑘 are integers, which is only possible if 𝑗, 𝑘 ∈ {1, −1}.

Therefore, it follows that 𝑎 = −𝑏 or 𝑎 = 𝑏.

Problem 5 – Modular Arithmetic

a) Prove that if 𝑎 ∣ 𝑏 and 𝑏 ∣ 𝑎, where 𝑎 and 𝑏 are integers, then 𝑎 = 𝑏 or
𝑎 = −𝑏.

b) Prove that if 𝑛 ∣ 𝑚, where 𝑛 and 𝑚 are integers greater than 1, and if
𝑎 ≡ 𝑏 (mod 𝑚), where 𝑎 and 𝑏 are integers, then 𝑎 ≡ 𝑏 (mod 𝑛).

Now try part (b) with the people around you, and then we’ll go over it together!

Problem 5 – Modular Arithmetic

b) Prove that if 𝑛 ∣ 𝑚, where 𝑛 and 𝑚 are integers greater than 1, and if
𝑎 ≡ 𝑏 (mod 𝑚), where 𝑎 and 𝑏 are integers, then 𝑎 ≡ 𝑏 (mod 𝑛).

Problem 5 – Modular Arithmetic

b) Prove that if 𝑛 ∣ 𝑚, where 𝑛 and 𝑚 are integers greater than 1, and if
𝑎 ≡ 𝑏 (mod 𝑚), where 𝑎 and 𝑏 are integers, then 𝑎 ≡ 𝑏 (mod 𝑛).

Let 𝑛, 𝑚, 𝑎, 𝑏 be integers. Suppose 𝑛 ∣ 𝑚 with 𝑛, 𝑚 > 1, and 𝑎 ≡ 𝑏 (mod 𝑚).

…

Therefore, we have 𝑎 ≡ 𝑏 (mod 𝑛).

Problem 5 – Modular Arithmetic

b) Prove that if 𝑛 ∣ 𝑚, where 𝑛 and 𝑚 are integers greater than 1, and if
𝑎 ≡ 𝑏 (mod 𝑚), where 𝑎 and 𝑏 are integers, then 𝑎 ≡ 𝑏 (mod 𝑛).

Let 𝑛, 𝑚, 𝑎, 𝑏 be integers. Suppose 𝑛 ∣ 𝑚 with 𝑛, 𝑚 > 1, and 𝑎 ≡ 𝑏 (mod 𝑚).

…
… we have 𝑛 ∣ (𝑏 − 𝑎).

Therefore, by definition of congruence, we have 𝑎 ≡ 𝑏 (mod 𝑛).

Problem 5 – Modular Arithmetic

b) Prove that if 𝑛 ∣ 𝑚, where 𝑛 and 𝑚 are integers greater than 1, and if
𝑎 ≡ 𝑏 (mod 𝑚), where 𝑎 and 𝑏 are integers, then 𝑎 ≡ 𝑏 (mod 𝑛).

Let 𝑛, 𝑚, 𝑎, 𝑏 be integers. Suppose 𝑛 ∣ 𝑚 with 𝑛, 𝑚 > 1, and 𝑎 ≡ 𝑏 (mod 𝑚).

…
… we have 𝑏 − 𝑎 = 𝑛𝐶.
Because 𝐶 is an integer, by definition of divides, we have 𝑛 ∣ (𝑏 − 𝑎).

Therefore, by definition of congruence, we have 𝑎 ≡ 𝑏 (mod 𝑛).

NOTE: we don’t know what C will look like
yet, just that there is SOME integer here!

Problem 5 – Modular Arithmetic

b) Prove that if 𝑛 ∣ 𝑚, where 𝑛 and 𝑚 are integers greater than 1, and if
𝑎 ≡ 𝑏 (mod 𝑚), where 𝑎 and 𝑏 are integers, then 𝑎 ≡ 𝑏 (mod 𝑛).

Let 𝑛, 𝑚, 𝑎, 𝑏 be integers. Suppose 𝑛 ∣ 𝑚 with 𝑛, 𝑚 > 1, and 𝑎 ≡ 𝑏 (mod 𝑚).

By definition of divides, we have 𝑚 = 𝑘𝑛 for some 𝑘 ∈ ℤ.
…
… we have 𝑏 − 𝑎 = 𝑛𝐶.
Because 𝐶 is an integer, by definition of divides, we have 𝑛 ∣ (𝑏 − 𝑎).

Therefore, by definition of congruence, we have 𝑎 ≡ 𝑏 (mod 𝑛).

Problem 5 – Modular Arithmetic

b) Prove that if 𝑛 ∣ 𝑚, where 𝑛 and 𝑚 are integers greater than 1, and if
𝑎 ≡ 𝑏 (mod 𝑚), where 𝑎 and 𝑏 are integers, then 𝑎 ≡ 𝑏 (mod 𝑛).

Let 𝑛, 𝑚, 𝑎, 𝑏 be integers. Suppose 𝑛 ∣ 𝑚 with 𝑛, 𝑚 > 1, and 𝑎 ≡ 𝑏 (mod 𝑚).

By definition of divides, we have 𝑚 = 𝑘𝑛 for some 𝑘 ∈ ℤ.
By definition of congruence, we have 𝑚 ∣ 𝑎 − 𝑏, which means that 𝑎 − 𝑏 = 𝑚𝑗 for some
𝑗 ∈ ℤ.
…
… we have 𝑏 − 𝑎 = 𝑛𝐶.
Because 𝐶 is an integer, by definition of divides, we have 𝑛 ∣ (𝑏 − 𝑎).

Therefore, by definition of congruence, we have 𝑎 ≡ 𝑏 (mod 𝑛).

Problem 5 – Modular Arithmetic

b) Prove that if 𝑛 ∣ 𝑚, where 𝑛 and 𝑚 are integers greater than 1, and if
𝑎 ≡ 𝑏 (mod 𝑚), where 𝑎 and 𝑏 are integers, then 𝑎 ≡ 𝑏 (mod 𝑛).

Let 𝑛, 𝑚, 𝑎, 𝑏 be integers. Suppose 𝑛 ∣ 𝑚 with 𝑛, 𝑚 > 1, and 𝑎 ≡ 𝑏 (mod 𝑚).

By definition of divides, we have 𝑚 = 𝑘𝑛 for some 𝑘 ∈ ℤ.
By definition of congruence, we have 𝑚 ∣ 𝑎 − 𝑏, which means that 𝑎 − 𝑏 = 𝑚𝑗 for some
𝑗 ∈ ℤ.
Combining the two equations, we see that 𝑎 − 𝑏 = (𝑘𝑛𝑗) = 𝑛(𝑘𝑗).
… we have 𝑏 − 𝑎 = 𝑛𝐶.
Because 𝐶 is an integer, by definition of divides, we have 𝑛 ∣ (𝑏 − 𝑎).

Therefore, by definition of congruence, we have 𝑎 ≡ 𝑏 (mod 𝑛).

Problem 5 – Modular Arithmetic

b) Prove that if 𝑛 ∣ 𝑚, where 𝑛 and 𝑚 are integers greater than 1, and if
𝑎 ≡ 𝑏 (mod 𝑚), where 𝑎 and 𝑏 are integers, then 𝑎 ≡ 𝑏 (mod 𝑛).

Let 𝑛, 𝑚, 𝑎, 𝑏 be integers. Suppose 𝑛 ∣ 𝑚 with 𝑛, 𝑚 > 1, and 𝑎 ≡ 𝑏 (mod 𝑚).

By definition of divides, we have 𝑚 = 𝑘𝑛 for some 𝑘 ∈ ℤ.
By definition of congruence, we have 𝑚 ∣ 𝑎 − 𝑏, which means that 𝑎 − 𝑏 = 𝑚𝑗 for some
𝑗 ∈ ℤ.
Combining the two equations, we see that 𝑎 − 𝑏 = (𝑘𝑛𝑗) = 𝑛(𝑘𝑗).
Equivalently, we have 𝑏 − 𝑎 = 𝑛(−𝑘𝑗).
Because 𝐶 is an integer, by definition of divides, we have 𝑛 ∣ (𝑏 − 𝑎).

Therefore, by definition of congruence, we have 𝑎 ≡ 𝑏 (mod 𝑛).

Problem 5 – Modular Arithmetic

b) Prove that if 𝑛 ∣ 𝑚, where 𝑛 and 𝑚 are integers greater than 1, and if
𝑎 ≡ 𝑏 (mod 𝑚), where 𝑎 and 𝑏 are integers, then 𝑎 ≡ 𝑏 (mod 𝑛).

Let 𝑛, 𝑚, 𝑎, 𝑏 be integers. Suppose 𝑛 ∣ 𝑚 with 𝑛, 𝑚 > 1, and 𝑎 ≡ 𝑏 (mod 𝑚).

By definition of divides, we have 𝑚 = 𝑘𝑛 for some 𝑘 ∈ ℤ.
By definition of congruence, we have 𝑚 ∣ 𝑎 − 𝑏, which means that 𝑎 − 𝑏 = 𝑚𝑗 for some
𝑗 ∈ ℤ.
Combining the two equations, we see that 𝑎 − 𝑏 = (𝑘𝑛𝑗) = 𝑛(𝑘𝑗).
Equivalently, we have 𝑏 − 𝑎 = 𝑛(−𝑘𝑗).
Because −𝑘𝑗 is an integer, by definition of divides, we have 𝑛 ∣ (𝑏 − 𝑎).

Therefore, by definition of congruence, we have 𝑎 ≡ 𝑏 (mod 𝑛).

That’s All, Folks!

Thanks for coming to section this week!
Any questions?

	Intro
	Slide 1: CSE 311 Section 5

	Administrivia
	Slide 2: Administrivia
	Slide 3: Announcements & Reminders

	GCD
	Slide 4: Greatest Common Divisor
	Slide 5: Some Definitions

	1
	Slide 6: Problem 1 – Warm-Up
	Slide 7: Problem 1 – Warm-Up
	Slide 8: Problem 1 – Warm-Up
	Slide 9: Problem 1 – Warm-Up
	Slide 10: Problem 1 – Warm-Up
	Slide 11: Problem 1 – Warm-Up

	Number Theory
	Slide 12: Extended Euclidean Algorithm
	Slide 13: Finding GCD
	Slide 14: Euclid’s Algorithm
	Slide 15: Euclid’s Algorithm
	Slide 16: Euclid’s Algorithm
	Slide 17: Euclid’s Algorithm
	Slide 18: Euclid’s Algorithm
	Slide 19: Euclid’s Algorithm
	Slide 20: Bézout’s Theorem
	Slide 21: Extended Euclidean Algorithm
	Slide 22: Extended Euclidean Algorithm
	Slide 23: Extended Euclidean Algorithm
	Slide 24: Extended Euclidean Algorithm
	Slide 25: Extended Euclidean Algorithm
	Slide 26: Extended Euclidean Algorithm
	Slide 27: Extended Euclidean Algorithm
	Slide 28: Extended Euclidean Algorithm
	Slide 29: Extended Euclidean Algorithm
	Slide 30: Extended Euclidean Algorithm
	Slide 31: Extended Euclidean Algorithm
	Slide 32: Extended Euclidean Algorithm
	Slide 33: Extended Euclidean Algorithm
	Slide 34: Extended Euclidean Algorithm
	Slide 35: Extended Euclidean Algorithm
	Slide 36: Extended Euclidean Algorithm
	Slide 37: Extended Euclidean Algorithm
	Slide 38: Extended Euclidean Algorithm
	Slide 39: Extended Euclidean Algorithm
	Slide 40: Extended Euclidean Algorithm
	Slide 41: Extended Euclidean Algorithm
	Slide 42: Extended Euclidean Algorithm

	2
	Slide 43: Problem 2 – Extended Euclidean Algorithm
	Slide 44: Problem 2 – Extended Euclidean Algorithm
	Slide 45: Problem 2 – Extended Euclidean Algorithm
	Slide 46: Problem 2 – Extended Euclidean Algorithm
	Slide 47: Problem 2 – Extended Euclidean Algorithm
	Slide 48: Problem 2 – Extended Euclidean Algorithm
	Slide 49: Problem 2 – Extended Euclidean Algorithm
	Slide 50: Problem 2 – Extended Euclidean Algorithm
	Slide 51: Problem 2 – Extended Euclidean Algorithm

	Number Theory
	Slide 52: Number Theory
	Slide 53: Some Definitions

	5a
	Slide 54: Problem 5 – Modular Arithmetic
	Slide 55: Problem 5 – Modular Arithmetic
	Slide 56: Problem 5 – Modular Arithmetic
	Slide 57: Problem 5 – Modular Arithmetic
	Slide 58: Problem 5 – Modular Arithmetic
	Slide 59: Problem 5 – Modular Arithmetic

	5b
	Slide 60: Problem 5 – Modular Arithmetic
	Slide 61: Problem 5 – Modular Arithmetic
	Slide 62: Problem 5 – Modular Arithmetic
	Slide 63: Problem 5 – Modular Arithmetic
	Slide 64: Problem 5 – Modular Arithmetic
	Slide 65: Problem 5 – Modular Arithmetic
	Slide 66: Problem 5 – Modular Arithmetic
	Slide 67: Problem 5 – Modular Arithmetic
	Slide 68: Problem 5 – Modular Arithmetic
	Slide 69: Problem 5 – Modular Arithmetic

	Outro
	Slide 70: That’s All, Folks!

