
CSE 311 Section 5

Number Theory & Induction



Administrivia



Announcements & Reminders

● HW3

○ If you think something was graded incorrectly, submit a regrade request!

● HW4 due tomorrow 10PM on Gradescope

○ Use late days if you need them!

● HW5

○ 2 parts!

○ BOTH PARTS due Wednesday 11/8 @ 10pm

○ You have extra time on this homework (1.5 weeks)



Greatest Common Divisor



Some Definitions

● Greatest Common Divisor (GCD): 

○ The Greatest Common Divisor of 𝑎 and 𝑏 (gcd(𝑎, 𝑏)) is the 

largest integer 𝑐 such that 𝑐|𝑎 and 𝑐|𝑏

● Multiplicative Inverse:

○ The multiplicative inverse of 𝑎 (mod 𝑛) is an integer 𝑏 such that 

𝑎𝑏 ≡ 1 (mod 𝑛)



Problem 1 – Warm-Up

a) Calculate gcd(100, 50).

b) Calculate gcd(17, 31)

c) Find the multiplicative inverse of 6 (mod 7).

d) Does 49 have a multiplicative inverse (mod 7)?

Try this problem with the people around you, and then we’ll go over it together!
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Problem 1 – Warm-Up

a) Calculate gcd(100, 50).

b) Calculate gcd(17, 31)

c) Find the multiplicative inverse of 6 (mod 7).

d) Does 49 have a multiplicative inverse (mod 7)?

50

1

6

It does not. Intuitively, this is because 49x for any x is going to be 0 mod 7, 
which means it can never be 1.



Extended Euclidean Algorithm



Finding GCD

GCD Facts: 

If 𝑎 and 𝑏 are positive 

integers, then:

gcd(𝑎, 𝑏) = gcd(𝑏, 𝑎%𝑏)

gcd 𝑎, 0 = 𝑎

public int GCD(int m, int n){
 if(m<n){
  int temp = m;
  m=n;
  n=temp;
 }
 while(n != 0) {
  int rem = m % n;
  m=n;
  n=temp;
 }
 return m;
}



Euclid’s Algorithm

gcd(660,126) 

gcd(𝑎, 𝑏) = gcd(𝑏, 𝑎%𝑏)



Euclid’s Algorithm

gcd(660,126) = gcd(126, 660 % 126) = gcd(126, 30)

  

gcd(𝑎, 𝑏) = gcd(𝑏, 𝑎%𝑏)



Euclid’s Algorithm

gcd(660,126) = gcd(126, 660 % 126) = gcd(126, 30)

  = gcd(30, 126 % 30)  = gcd(30, 6)

  

gcd(𝑎, 𝑏) = gcd(𝑏, 𝑎%𝑏)



Euclid’s Algorithm

gcd(660,126) = gcd(126, 660 % 126) = gcd(126, 30)

  = gcd(30, 126 % 30)  = gcd(30, 6)

  = gcd(6, 30 % 6)  = gcd(6, 0)

  

gcd(𝑎, 𝑏) = gcd(𝑏, 𝑎%𝑏)



Euclid’s Algorithm

gcd(660,126) = gcd(126, 660 % 126) = gcd(126, 30)

  = gcd(30, 126 % 30)  = gcd(30, 6)

  = gcd(6, 30 % 6)  = gcd(6, 0)

  = 6

gcd(𝑎, 𝑏) = gcd(𝑏, 𝑎%𝑏)



Euclid’s Algorithm

gcd(660,126) = gcd(126, 660 % 126) = gcd(126, 30)

  = gcd(30, 126 % 30)  = gcd(30, 6)

  = gcd(6, 30 % 6)  = gcd(6, 0)

  = 6

Tableau form

660 = 5 ⋅ 126 + 30

126 = 4 ⋅ 30  + 6

30  = 5 ⋅ 6   + 0

gcd(𝑎, 𝑏) = gcd(𝑏, 𝑎%𝑏)



Bézout’s Theorem

● Bézout’s Theorem: 

○ If 𝑎 and 𝑏 are positive integers, then there exist integers 𝑠 and 𝑡 

such that 

gcd(𝑎, 𝑏) = 𝑠𝑎 + 𝑡𝑏

● We’re not going to prove this theorem in section though, 

because it’s hard and ugly 



Extended Euclidean Algorithm

Bézout’s Theorem tells us that gcd(𝑎, 𝑏) = 𝑠𝑎 + 𝑡𝑏. 

To find the 𝑠, 𝑡 we can use the Extended Euclidean Algorithm.

● Step 1: compute gcd(𝑎, 𝑏); keep tableau information

● Step 2: solve all equations for the remainder

● Step 3: substitute backward



Extended Euclidean Algorithm
● Compute 𝒈𝒄𝒅(𝒂, 𝒃); keep 

tableau information

● Solve all equations for the 

remainder

● Substitute backwardgcd(35,27)  
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tableau information

● Solve all equations for the 

remainder

● Substitute backwardgcd(35,27)  = gcd(27, 35%27) = gcd(27,8)



Extended Euclidean Algorithm
● Compute 𝒈𝒄𝒅(𝒂, 𝒃); keep 

tableau information

● Solve all equations for the 

remainder

● Substitute backwardgcd(35,27)  = gcd(27, 35%27) = gcd(27,8)

    = gcd(8, 27%8)      = gcd(8, 3)



Extended Euclidean Algorithm
● Compute 𝒈𝒄𝒅(𝒂, 𝒃); keep 

tableau information

● Solve all equations for the 

remainder

● Substitute backwardgcd(35,27)  = gcd(27, 35%27) = gcd(27,8)

    = gcd(8, 27%8)      = gcd(8, 3)

                   = gcd(3, 8%3)       = gcd(3, 2)



Extended Euclidean Algorithm
● Compute 𝒈𝒄𝒅(𝒂, 𝒃); keep 

tableau information

● Solve all equations for the 

remainder

● Substitute backwardgcd(35,27)  = gcd(27, 35%27) = gcd(27,8)

    = gcd(8, 27%8)      = gcd(8, 3)

                   = gcd(3, 8%3)       = gcd(3, 2)

                   = gcd(2, 3%2)       = gcd(2,1)



Extended Euclidean Algorithm
● Compute 𝒈𝒄𝒅(𝒂, 𝒃); keep 

tableau information

● Solve all equations for the 

remainder

● Substitute backwardgcd(35,27)  = gcd(27, 35%27) = gcd(27,8)

    = gcd(8, 27%8)      = gcd(8, 3)

                   = gcd(3, 8%3)       = gcd(3, 2)

                   = gcd(2, 3%2)       = gcd(2,1)

                  = gcd(1, 2%1)       = gcd(1,0)



Extended Euclidean Algorithm
● Compute 𝒈𝒄𝒅(𝒂, 𝒃); keep 

tableau information

● Solve all equations for the 

remainder

● Substitute backward

35 = 1∙27 + 8

27 = 3∙8  + 3

8 = 2∙3  + 2

3  = 1∙2  + 1

gcd(35,27)  = gcd(27, 35%27) = gcd(27,8)

    = gcd(8, 27%8)      = gcd(8, 3)

                   = gcd(3, 8%3)       = gcd(3, 2)

                   = gcd(2, 3%2)       = gcd(2,1)

                  = gcd(1, 2%1)       = gcd(1,0)



Extended Euclidean Algorithm
● Compute 𝑔𝑐𝑑(𝑎, 𝑏); keep 

tableau information

● Solve all equations for the 

remainder

● Substitute backward

35 = 1∙27 + 8

27 = 3∙8  + 3

8 = 2∙3  + 2

3  = 1∙2  + 1



Extended Euclidean Algorithm
● Compute 𝑔𝑐𝑑(𝑎, 𝑏); keep 

tableau information

● Solve all equations for the 

remainder

● Substitute backward

8 = 35 - 1∙2735 = 1∙27 + 8

27 = 3∙8  + 3

8 = 2∙3  + 2

3  = 1∙2  + 1



Extended Euclidean Algorithm
● Compute 𝑔𝑐𝑑(𝑎, 𝑏); keep 

tableau information

● Solve all equations for the 

remainder

● Substitute backward

8 = 35 - 1∙27

3 = 27 - 3∙8

35 = 1∙27 + 8

27 = 3∙8  + 3

8 = 2∙3  + 2

3  = 1∙2  + 1



Extended Euclidean Algorithm
● Compute 𝑔𝑐𝑑(𝑎, 𝑏); keep 

tableau information

● Solve all equations for the 

remainder

● Substitute backward

8 = 35 - 1∙27

3 = 27 - 3∙8

2 = 8  - 2∙3

35 = 1∙27 + 8

27 = 3∙8  + 3

8 = 2∙3  + 2

3  = 1∙2  + 1



Extended Euclidean Algorithm
● Compute 𝑔𝑐𝑑(𝑎, 𝑏); keep 

tableau information

● Solve all equations for the 

remainder

● Substitute backward

8 = 35 - 1∙27

3 = 27 - 3∙8

2 = 8  - 2∙3

1 = 3  - 1∙2

35 = 1∙27 + 8

27 = 3∙8  + 3

8 = 2∙3  + 2

3  = 1∙2  + 1



Extended Euclidean Algorithm
● Compute 𝑔𝑐𝑑(𝑎, 𝑏); keep 

tableau information

● Solve all equations for the 

remainder

● Substitute backward
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3 = 27 - 3∙8

2 = 8  - 2∙3

1 = 3  - 1∙2



Extended Euclidean Algorithm
● Compute 𝑔𝑐𝑑(𝑎, 𝑏); keep 

tableau information

● Solve all equations for the 

remainder

● Substitute backward
8 = 35 - 1∙27

3 = 27 - 3∙8

2 = 8  - 2∙3

1 = 3  - 1∙2
1 = 3 - 1∙2



Extended Euclidean Algorithm
● Compute 𝑔𝑐𝑑(𝑎, 𝑏); keep 

tableau information

● Solve all equations for the 

remainder

● Substitute backward
8 = 35 - 1∙27

3 = 27 - 3∙8

2 = 8  - 2∙3

1 = 3  - 1∙2
1 = 3 - 1∙2

  = 3 - 1∙(8 – 2∙3)



Extended Euclidean Algorithm
● Compute 𝑔𝑐𝑑(𝑎, 𝑏); keep 

tableau information

● Solve all equations for the 

remainder

● Substitute backward
8 = 35 - 1∙27

3 = 27 - 3∙8

2 = 8  - 2∙3

1 = 3  - 1∙2
1 = 3 - 1∙2

  = 3 - 1∙(8 – 2∙3)

  = -1∙8 + 3∙3



Extended Euclidean Algorithm
● Compute 𝑔𝑐𝑑(𝑎, 𝑏); keep 

tableau information

● Solve all equations for the 

remainder

● Substitute backward
8 = 35 - 1∙27

3 = 27 - 3∙8

2 = 8  - 2∙3

1 = 3  - 1∙2
1 = 3 - 1∙2

  = 3 - 1∙(8 – 2∙3)

  = -1∙8 + 3∙3

 = -1∙8 + 3(27 - 3∙8)



Extended Euclidean Algorithm
● Compute 𝑔𝑐𝑑(𝑎, 𝑏); keep 

tableau information

● Solve all equations for the 

remainder

● Substitute backward
8 = 35 - 1∙27

3 = 27 - 3∙8

2 = 8  - 2∙3

1 = 3  - 1∙2
1 = 3 - 1∙2

  = 3 - 1∙(8 – 2∙3)

  = -1∙8 + 3∙3

 = -1∙8 + 3(27 - 3∙8)

  = 3∙27 - 10∙8



Extended Euclidean Algorithm
● Compute 𝑔𝑐𝑑(𝑎, 𝑏); keep 

tableau information

● Solve all equations for the 

remainder

● Substitute backward
8 = 35 - 1∙27

3 = 27 - 3∙8

2 = 8  - 2∙3

1 = 3  - 1∙2
1 = 3 - 1∙2

  = 3 - 1∙(8 – 2∙3)

  = -1∙8 + 3∙3

 = -1∙8 + 3(27 - 3∙8)

  = 3∙27 - 10∙8

  = 3∙27 – 10(35 - 1∙27)



Extended Euclidean Algorithm
● Compute 𝑔𝑐𝑑(𝑎, 𝑏); keep 

tableau information

● Solve all equations for the 

remainder

● Substitute backward
8 = 35 - 1∙27

3 = 27 - 3∙8

2 = 8  - 2∙3

1 = 3  - 1∙2
1 = 3 - 1∙2

  = 3 - 1∙(8 – 2∙3)

  = -1∙8 + 3∙3

 = -1∙8 + 3(27 - 3∙8)

  = 3∙27 - 10∙8

  = 3∙27 – 10(35 - 1∙27)

  = 13∙27 - 10∙35



Extended Euclidean Algorithm
● Compute 𝑔𝑐𝑑(𝑎, 𝑏); keep 

tableau information

● Solve all equations for the 

remainder

● Substitute backward
8 = 35 - 1∙27

3 = 27 - 3∙8

2 = 8  - 2∙3

1 = 3  - 1∙2
1 = 3 - 1∙2

  = 3 - 1∙(8 – 2∙3)

  = -1∙8 + 3∙3

 = -1∙8 + 3(27 - 3∙8)

  = 3∙27 - 10∙8

  = 3∙27 – 10(35 - 1∙27)

  = 13∙27 - 10∙35

When substituting back, you 

keep the larger of 𝑚, 𝑛 and the 

number you just substituted. 

Don’t simplify further! (or 

you’ll lose the form you need)



Problem 2 – Extended Euclidean Algorithm

a) Find the multiplicative inverse 𝑦 of 7 mod 33. That is, find 𝑦 such that 
7𝑦 ≡ 1 (𝑚𝑜𝑑 33). You should use the extended Euclidean Algorithm. Your 
answer should be in the range 0 ≤ y < 33.

b) Now, solve 7𝑧 ≡  2 (mod 33) for all of its integer solutions 𝑧. 

Try this problem with the people around you, and then we’ll go over it together!



Problem 2 – Extended Euclidean Algorithm
a) Find the multiplicative inverse 𝑦 of 7 mod 33. That is, find 𝑦 such that 7𝑦 ≡ 1 (𝑚𝑜𝑑 33). You 

should use the extended Euclidean Algorithm. Your answer should be in the range 0 ≤ y < 33.



Problem 2 – Extended Euclidean Algorithm
a) Find the multiplicative inverse 𝑦 of 7 mod 33. That is, find 𝑦 such that 7𝑦 ≡ 1 (𝑚𝑜𝑑 33). You 

should use the extended Euclidean Algorithm. Your answer should be in the range 0 ≤ y < 33.

First, we find the gcd: 
gcd(33,7) = gcd(7,5)  33 = 7 • 4 + 5
   = gcd(5,2)  7 = 5 • 1 + 2
   = gcd(2,1)  5 = 2 • 2 + 1
   = gcd(1,0)  2 = 1 • 2 + 0



Problem 2 – Extended Euclidean Algorithm
a) Find the multiplicative inverse 𝑦 of 7 mod 33. That is, find 𝑦 such that 7𝑦 ≡ 1 (𝑚𝑜𝑑 33). You 

should use the extended Euclidean Algorithm. Your answer should be in the range 0 ≤ y < 33.

First, we find the gcd: 
gcd(33,7) = gcd(7,5)  33 = 7 • 4 + 5
   = gcd(5,2)  7 = 5 • 1 + 2
   = gcd(2,1)  5 = 2 • 2 + 1
   = gcd(1,0)  2 = 1 • 2 + 0

Next, we re-arrange the equations 
by solving for the remainder: 
 1 = 5 − 2 • 2 (6) 
 2 = 7 − 5 • 1 (7)
 5 = 33 − 7 • 4



Problem 2 – Extended Euclidean Algorithm
a) Find the multiplicative inverse 𝑦 of 7 mod 33. That is, find 𝑦 such that 7𝑦 ≡ 1 (𝑚𝑜𝑑 33). You 

should use the extended Euclidean Algorithm. Your answer should be in the range 0 ≤ y < 33.

First, we find the gcd: 
gcd(33,7) = gcd(7,5)  33 = 7 • 4 + 5
   = gcd(5,2)  7 = 5 • 1 + 2
   = gcd(2,1)  5 = 2 • 2 + 1
   = gcd(1,0)  2 = 1 • 2 + 0

Next, we re-arrange the equations 
by solving for the remainder: 
 1 = 5 − 2 • 2 (6) 
 2 = 7 − 5 • 1 (7)
 5 = 33 − 7 • 4

Now, we backward substitute into the boxed numbers using 
the equations: 
 1  = 5 − 2 • 2 
     = 5 − (7 − 5 • 1) • 2 
     = 3 • 5 − 7 • 2 
     = 3 • (33 − 7 • 4) − 7 • 2 
     = 33 • 3 + 7 • −14 



Problem 2 – Extended Euclidean Algorithm
a) Find the multiplicative inverse 𝑦 of 7 mod 33. That is, find 𝑦 such that 7𝑦 ≡ 1 (𝑚𝑜𝑑 33). You 

should use the extended Euclidean Algorithm. Your answer should be in the range 0 ≤ y < 33.

First, we find the gcd: 
gcd(33,7) = gcd(7,5)  33 = 7 • 4 + 5
   = gcd(5,2)  7 = 5 • 1 + 2
   = gcd(2,1)  5 = 2 • 2 + 1
   = gcd(1,0)  2 = 1 • 2 + 0

Next, we re-arrange the equations 
by solving for the remainder: 
 1 = 5 − 2 • 2 (6) 
 2 = 7 − 5 • 1 (7)
 5 = 33 − 7 • 4

Now, we backward substitute into the boxed numbers using 
the equations: 
 1  = 5 − 2 • 2 
     = 5 − (7 − 5 • 1) • 2 
     = 3 • 5 − 7 • 2 
     = 3 • (33 − 7 • 4) − 7 • 2 
     = 33 • 3 + 7 • −14 

So, 1 = 33 • 3 + 7 • −14. 
Thus, 33 − 14 = 19 is the 
multiplicative inverse of 
7 mod 33



Problem 2 – Extended Euclidean Algorithm

b) Now, solve 7𝑧 ≡  2 (mod 33) for all of its integer solutions 𝑧. 



Problem 2 – Extended Euclidean Algorithm

b) Now, solve 7𝑧 ≡  2 (mod 33) for all of its integer solutions 𝑧. 

If 7y ≡ 1(mod 33), then 2 · 7y ≡ 2(mod 33). 



Problem 2 – Extended Euclidean Algorithm

b) Now, solve 7𝑧 ≡  2 (mod 33) for all of its integer solutions 𝑧. 

If 7y ≡ 1(mod 33), then 2 · 7y ≡ 2(mod 33). 

So, z ≡ 2 · 19(mod 33) ≡ 5(mod 33). This means that the set of 
solutions is {5 + 33k | k ∈ Z}



Number Theory



Some Definitions

● Divides: 

○ For 𝑎, 𝑏 ∈ ℤ: 𝑎 ∣ 𝑏 iff  ∃ 𝑘 ∈ ℤ  𝑏 = 𝑘𝑎 

○ For integers 𝑎 and 𝑏, we say 𝑎 divides 𝑏 if and only if there exists 

an integer 𝑘 such that 𝑏 = 𝑘𝑎

● Congruence Modulo:

○ For 𝑎, 𝑏 ∈ ℤ, 𝑚 ∈ ℤ+: 𝑎 ≡ 𝑏 (mod 𝑚) iff 𝑚 ∣ (𝑏 − 𝑎) 

○ For integers 𝑎 and 𝑏 and positive integer 𝑚, we say 𝑎 is 

congruent to 𝑏 modulo 𝑚 if and only if 𝑚 divides 𝑏 − 𝑎



Problem 5 – Modular Arithmetic

a) Prove that if 𝑎 ∣ 𝑏 and 𝑏 ∣ 𝑎, where 𝑎 and 𝑏 are integers, then 𝑎 = 𝑏 or 
𝑎 = −𝑏.

b) Prove that if 𝑛 ∣ 𝑚, where 𝑛 and 𝑚 are integers greater than 1, and if 
𝑎 ≡ 𝑏 (mod 𝑚), where 𝑎 and 𝑏 are integers, then 𝑎 ≡ 𝑏 (mod 𝑛).

Lets walk through part (a) together.



Problem 5 – Modular Arithmetic

a) Prove that if 𝑎 ∣ 𝑏 and 𝑏 ∣ 𝑎, where 𝑎 and 𝑏 are integers, then 𝑎 = 𝑏 or 
𝑎 = −𝑏.

Suppose that 𝑎 ∣ 𝑏 and 𝑏 ∣ 𝑎, where 𝑎, 𝑏 are integers. 
… 

Therefore, it follows that 𝑎 = −𝑏 or 𝑎 = 𝑏.

Start with your 
proof skeleton!



Problem 5 – Modular Arithmetic

a) Prove that if 𝑎 ∣ 𝑏 and 𝑏 ∣ 𝑎, where 𝑎 and 𝑏 are integers, then 𝑎 = 𝑏 or 
𝑎 = −𝑏.

Suppose that 𝑎 ∣ 𝑏 and 𝑏 ∣ 𝑎, where 𝑎, 𝑏 are integers. 

By the definition of divides, we have 𝑎 ≠ 0, 𝑏 ≠ 0 and 𝑏 = 𝑘𝑎, 𝑎 = 𝑗𝑏 for some integers 
𝑘, 𝑗. 
…

Therefore, it follows that 𝑎 = −𝑏 or 𝑎 = 𝑏.



Problem 5 – Modular Arithmetic

a) Prove that if 𝑎 ∣ 𝑏 and 𝑏 ∣ 𝑎, where 𝑎 and 𝑏 are integers, then 𝑎 = 𝑏 or 
𝑎 = −𝑏.

Suppose that 𝑎 ∣ 𝑏 and 𝑏 ∣ 𝑎, where 𝑎, 𝑏 are integers. 

By the definition of divides, we have 𝑎 ≠ 0, 𝑏 ≠ 0 and 𝑏 = 𝑘𝑎, 𝑎 = 𝑗𝑏 for some integers 
𝑘, 𝑗. 
Combining these equations, we see that 𝑎 = 𝑗(𝑘𝑎). 
…

Therefore, it follows that 𝑎 = −𝑏 or 𝑎 = 𝑏.



Problem 5 – Modular Arithmetic

a) Prove that if 𝑎 ∣ 𝑏 and 𝑏 ∣ 𝑎, where 𝑎 and 𝑏 are integers, then 𝑎 = 𝑏 or 
𝑎 = −𝑏.

Suppose that 𝑎 ∣ 𝑏 and 𝑏 ∣ 𝑎, where 𝑎, 𝑏 are integers. 

By the definition of divides, we have 𝑎 ≠ 0, 𝑏 ≠ 0 and 𝑏 = 𝑘𝑎, 𝑎 = 𝑗𝑏 for some integers 
𝑘, 𝑗. 
Combining these equations, we see that 𝑎 = 𝑗(𝑘𝑎). 

Then, dividing both sides by 𝑎, we get 1 = 𝑗𝑘. So, 
1

𝑗
=  𝑘. 

…

Therefore, it follows that 𝑎 = −𝑏 or 𝑎 = 𝑏.



Problem 5 – Modular Arithmetic

a) Prove that if 𝑎 ∣ 𝑏 and 𝑏 ∣ 𝑎, where 𝑎 and 𝑏 are integers, then 𝑎 = 𝑏 or 
𝑎 = −𝑏.

Suppose that 𝑎 ∣ 𝑏 and 𝑏 ∣ 𝑎, where 𝑎, 𝑏 are integers. 

By the definition of divides, we have 𝑎 ≠ 0, 𝑏 ≠ 0 and 𝑏 = 𝑘𝑎, 𝑎 = 𝑗𝑏 for some integers 
𝑘, 𝑗. 
Combining these equations, we see that 𝑎 = 𝑗(𝑘𝑎). 

Then, dividing both sides by 𝑎, we get 1 = 𝑗𝑘. So, 
1

𝑗
=  𝑘. 

Note that 𝑗 and 𝑘 are integers, which is only possible if 𝑗, 𝑘 ∈ {1, −1}. 

Therefore, it follows that 𝑎 = −𝑏 or 𝑎 = 𝑏.



Problem 5 – Modular Arithmetic

a) Prove that if 𝑎 ∣ 𝑏 and 𝑏 ∣ 𝑎, where 𝑎 and 𝑏 are integers, then 𝑎 = 𝑏 or 
𝑎 = −𝑏.

b) Prove that if 𝑛 ∣ 𝑚, where 𝑛 and 𝑚 are integers greater than 1, and if 
𝑎 ≡ 𝑏 (mod 𝑚), where 𝑎 and 𝑏 are integers, then 𝑎 ≡ 𝑏 (mod 𝑛).

Now try part (b) with the people around you, and then we’ll go over it together!
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b) Prove that if 𝑛 ∣ 𝑚, where 𝑛 and 𝑚 are integers greater than 1, and if 
𝑎 ≡ 𝑏 (mod 𝑚), where 𝑎 and 𝑏 are integers, then 𝑎 ≡ 𝑏 (mod 𝑛).



Problem 5 – Modular Arithmetic

b) Prove that if 𝑛 ∣ 𝑚, where 𝑛 and 𝑚 are integers greater than 1, and if 
𝑎 ≡ 𝑏 (mod 𝑚), where 𝑎 and 𝑏 are integers, then 𝑎 ≡ 𝑏 (mod 𝑛).

Let 𝑛, 𝑚, 𝑎, 𝑏 be integers. Suppose 𝑛 ∣ 𝑚 with 𝑛, 𝑚 > 1, and 𝑎 ≡ 𝑏 (mod 𝑚). 

…

Therefore, we have 𝑎 ≡  𝑏 (mod 𝑛).
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b) Prove that if 𝑛 ∣ 𝑚, where 𝑛 and 𝑚 are integers greater than 1, and if 
𝑎 ≡ 𝑏 (mod 𝑚), where 𝑎 and 𝑏 are integers, then 𝑎 ≡ 𝑏 (mod 𝑛).

Let 𝑛, 𝑚, 𝑎, 𝑏 be integers. Suppose 𝑛 ∣ 𝑚 with 𝑛, 𝑚 > 1, and 𝑎 ≡ 𝑏 (mod 𝑚). 

…
… we have 𝑛 ∣ (𝑏 − 𝑎).

Therefore, by definition of congruence, we have 𝑎 ≡  𝑏 (mod 𝑛).



Problem 5 – Modular Arithmetic

b) Prove that if 𝑛 ∣ 𝑚, where 𝑛 and 𝑚 are integers greater than 1, and if 
𝑎 ≡ 𝑏 (mod 𝑚), where 𝑎 and 𝑏 are integers, then 𝑎 ≡ 𝑏 (mod 𝑛).

Let 𝑛, 𝑚, 𝑎, 𝑏 be integers. Suppose 𝑛 ∣ 𝑚 with 𝑛, 𝑚 > 1, and 𝑎 ≡ 𝑏 (mod 𝑚). 

… 
… we have 𝑏 − 𝑎 = 𝑛𝐶. 
Because 𝐶 is an integer, by definition of divides, we have 𝑛 ∣ (𝑏 − 𝑎).

Therefore, by definition of congruence, we have 𝑎 ≡  𝑏 (mod 𝑛).

NOTE: we don’t know what C will look like 
yet, just that there is SOME integer here!
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𝑎 ≡ 𝑏 (mod 𝑚), where 𝑎 and 𝑏 are integers, then 𝑎 ≡ 𝑏 (mod 𝑛).
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By definition of congruence, we have 𝑚 ∣ 𝑎 − 𝑏, which means that 𝑎 − 𝑏 = 𝑚𝑗 for some 
𝑗 ∈ ℤ.
Combining the two equations, we see that 𝑎 − 𝑏 = (𝑘𝑛𝑗) = 𝑛(𝑘𝑗). 
… we have 𝑏 − 𝑎 = 𝑛𝐶. 
Because 𝐶 is an integer, by definition of divides, we have 𝑛 ∣ (𝑏 − 𝑎).
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b) Prove that if 𝑛 ∣ 𝑚, where 𝑛 and 𝑚 are integers greater than 1, and if 
𝑎 ≡ 𝑏 (mod 𝑚), where 𝑎 and 𝑏 are integers, then 𝑎 ≡ 𝑏 (mod 𝑛).
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By definition of divides, we have 𝑚 = 𝑘𝑛 for some 𝑘 ∈ ℤ. 
By definition of congruence, we have 𝑚 ∣ 𝑎 − 𝑏, which means that 𝑎 − 𝑏 = 𝑚𝑗 for some 
𝑗 ∈ ℤ.
Combining the two equations, we see that 𝑎 − 𝑏 = (𝑘𝑛𝑗) = 𝑛(𝑘𝑗). 
Equivalently, we have 𝑏 − 𝑎 = 𝑛(−𝑘𝑗).
Because 𝐶 is an integer, by definition of divides, we have 𝑛 ∣ (𝑏 − 𝑎).

Therefore, by definition of congruence, we have 𝑎 ≡  𝑏 (mod 𝑛).



Problem 5 – Modular Arithmetic

b) Prove that if 𝑛 ∣ 𝑚, where 𝑛 and 𝑚 are integers greater than 1, and if 
𝑎 ≡ 𝑏 (mod 𝑚), where 𝑎 and 𝑏 are integers, then 𝑎 ≡ 𝑏 (mod 𝑛).

Let 𝑛, 𝑚, 𝑎, 𝑏 be integers. Suppose 𝑛 ∣ 𝑚 with 𝑛, 𝑚 > 1, and 𝑎 ≡ 𝑏 (mod 𝑚). 

By definition of divides, we have 𝑚 = 𝑘𝑛 for some 𝑘 ∈ ℤ. 
By definition of congruence, we have 𝑚 ∣ 𝑎 − 𝑏, which means that 𝑎 − 𝑏 = 𝑚𝑗 for some 
𝑗 ∈ ℤ.
Combining the two equations, we see that 𝑎 − 𝑏 = (𝑘𝑛𝑗) = 𝑛(𝑘𝑗). 
Equivalently, we have 𝑏 − 𝑎 = 𝑛(−𝑘𝑗).
Because −𝑘𝑗 is an integer, by definition of divides, we have 𝑛 ∣ (𝑏 − 𝑎).

Therefore, by definition of congruence, we have 𝑎 ≡  𝑏 (mod 𝑛).



That’s All, Folks!

Thanks for coming to section this week!
Any questions?
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