CSE 311 Section 5

Number Theory \& Induction

Announcements \& Reminders

- HW3
- If you think something was graded incorrectly, submit a regrade request!
- HW4 due tomorrow 10PM on Gradescope
- Use late days if you need them!
- HW5
- 2 parts!
- BOTH PARTS due Wednesday 11/8 @ 10pm
- You have extra time on this homework (1.5 weeks)

Greatest Common Divisor

Some Definitions

- Greatest Common Divisor (GCD):
- The Greatest Common Divisor of a and $b(\operatorname{gcd}(a, b))$ is the largest integer c such that $c \mid a$ and $c \mid b$
- Multiplicative Inverse:
- The multiplicative inverse of $a(\bmod n)$ is an integer b such that

$$
a b \equiv 1(\bmod n)
$$

Problem 1 - Warm-Up

a) Calculate $\operatorname{gcd}(100,50)$.
b) Calculate $\operatorname{gcd}(17,31)$
c) Find the multiplicative inverse of $6(\bmod 7)$.
d) Does 49 have a multiplicative inverse $(\bmod 7)$?

Try this problem with the people around you, and then we'll go over it together!

Problem 1 - Warm-Up

a) Calculate $\operatorname{gcd}(100,50)$.
b) Calculate $\operatorname{gcd}(17,31)$
c) Find the multiplicative inverse of $6(\bmod 7)$.
d) Does 49 have a multiplicative inverse $(\bmod 7)$?

Problem 1 - Warm-Up

a) Calculate $\operatorname{gcd}(100,50)$.

50
b) Calculate $\operatorname{gcd}(17,31)$
c) Find the multiplicative inverse of $6(\bmod 7)$.
d) Does 49 have a multiplicative inverse $(\bmod 7)$?

Problem 1 - Warm-Up

a) Calculate $\operatorname{gcd}(100,50)$.

50
b) Calculate $\operatorname{gcd}(17,31)$

1
c) Find the multiplicative inverse of $6(\bmod 7)$.
d) Does 49 have a multiplicative inverse $(\bmod 7)$?

Problem 1 - Warm-Up

a) Calculate $\operatorname{gcd}(100,50)$.

50
b) Calculate $\operatorname{gcd}(17,31)$

1
c) Find the multiplicative inverse of $6(\bmod 7)$.

6
d) Does 49 have a multiplicative inverse $(\bmod 7)$?

Problem 1 - Warm-Up

a) Calculate $\operatorname{gcd}(100,50)$.

50
b) Calculate $\operatorname{gcd}(17,31)$

1
c) Find the multiplicative inverse of $6(\bmod 7)$.

6
d) Does 49 have a multiplicative inverse $(\bmod 7)$?

It does not. Intuitively, this is because 49x for any x is going to be $0 \bmod 7$, which means it can never be 1 .

Extended Euclidean Algorithm

Finding GCD

GCD Facts:
If a and b are positive integers, then:

$$
\begin{gathered}
\operatorname{gcd}(a, b)=\operatorname{gcd}(b, a \% b) \\
\operatorname{gcd}(a, 0)=a
\end{gathered}
$$

```
public int GCD(int m, int n){
    if(m<n){
        int temp = m;
        m=n;
        n=temp;
    }
    while(n != 0) {
        int rem = m % n;
        m=n;
        n=temp;
    }
    return m;
}
```


Euclid's Algorithm

 $\operatorname{gcd}(660,126)$
Euclid's Algorithm

$$
\operatorname{gcd}(a, b)=\operatorname{gcd}(b, a \% b)
$$

```
gcd(660,126) = gcd(126,660 % 126) = gcd(126,30)
```

$$
\operatorname{gcd}(a, b)=\operatorname{gcd}(b, a \% b)
$$

Euclid's Algorithm

$$
\begin{aligned}
\operatorname{gcd}(660,126) & =\operatorname{gcd}(126,660 \% 126) & & =\operatorname{gcd}(126,30) \\
& =\operatorname{gcd}(30,126 \% 30) & & =\operatorname{gcd}(30,6)
\end{aligned}
$$

$$
\operatorname{gcd}(a, b)=\operatorname{gcd}(b, a \% b)
$$

Euclid's Algorithm

$$
\begin{aligned}
\operatorname{gcd}(660,126) & =\operatorname{gcd}(126,660 \% 126) & & =\operatorname{gcd}(126,30) \\
& =\operatorname{gcd}(30,126 \% 30) & & =\operatorname{gcd}(30,6) \\
& =\operatorname{gcd}(6,30 \% 6) & & =\operatorname{gcd}(6,0)
\end{aligned}
$$

$$
\operatorname{gcd}(a, b)=\operatorname{gcd}(b, a \% b)
$$

Euclid's Algorithm

$$
\begin{aligned}
\operatorname{gcd}(660,126) & =\operatorname{gcd}(126,660 \% 126) & & =\operatorname{gcd}(126,30) \\
& =\operatorname{gcd}(30,126 \% 30) & & =\operatorname{gcd}(30,6) \\
& =\operatorname{gcd}(6,30 \% 6) & & =\operatorname{gcd}(6,0) \\
& =6 & &
\end{aligned}
$$

$$
\operatorname{gcd}(a, b)=\operatorname{gcd}(b, a \% b)
$$

Euclid's Algorithm

$$
\begin{aligned}
\operatorname{gcd}(660,126) & =\operatorname{gcd}(126,660 \% 126) & & =\operatorname{gcd}(126,30) \\
& =\operatorname{gcd}(30,126 \% 30) & & =\operatorname{gcd}(30,6) \\
& =\operatorname{gcd}(6,30 \% 6) & & =\operatorname{gcd}(6,0) \\
& =6 & &
\end{aligned}
$$

Tableau form
$660=5 \cdot 126+30$
$126=4 \cdot 30+6$
$30=5 \cdot 6+0$

Bézout's Theorem

- Bézout's Theorem:
- If a and b are positive integers, then there exist integers s and t such that

$$
\operatorname{gcd}(a, b)=s a+t b
$$

- We're not going to prove this theorem in section though, because it's hard and ugly

Extended Euclidean Algorithm

Bézout's Theorem tells us that $\operatorname{gcd}(a, b)=s a+t b$.

To find the s, t we can use the Extended Euclidean Algorithm.

- Step 1: compute $\operatorname{gcd}(a, b)$; keep tableau information
- Step 2: solve all equations for the remainder
- Step 3: substitute backward

Extended Euclidean Algorithm

$\operatorname{gcd}(35,27)$

- Compute $\operatorname{gcd}(a, b)$; keep tableau information
- Solve all equations for the remainder
- Substitute backward

Extended Euclidean Algorithm

$$
\operatorname{gcd}(35,27)=\operatorname{gcd}(27,35 \% 27) \quad=\operatorname{gcd}(27,8)
$$

- Compute gcd $(a, b) ;$ keep tableau information
- Solve all equations for the remainder
- Substitute backward
- Compute $\operatorname{gcd}(a, b) ;$ keep

Extended Euclidean Algorithm

$$
\begin{aligned}
\operatorname{gcd}(35,27) & =\operatorname{gcd}(27,35 \% 27) & =\operatorname{gcd}(27,8) \\
& =\operatorname{gcd}(8,27 \% 8) & =\operatorname{gcd}(8,3)
\end{aligned}
$$

tableau information

- Solve all equations for the remainder
- Substitute backward
- Compute $\operatorname{gcd}(a, b) ;$ keep

Extended Euclidean Algorithm

$$
\begin{array}{rlrl}
\operatorname{gcd}(35,27) & =\operatorname{gcd}(27,35 \% 27) & =\operatorname{gcd}(27,8) \\
& =\operatorname{gcd}(8,27 \% 8) & & =\operatorname{gcd}(8,3) \\
& =\operatorname{gcd}(3,8 \% 3) & & =\operatorname{gcd}(3,2)
\end{array}
$$

tableau information

- Solve all equations for the remainder
- Substitute backward
- Compute $\operatorname{gcd}(a, b) ;$ keep

Extended Euclidean Algorithm

$$
\begin{aligned}
\operatorname{gcd}(35,27) & =\operatorname{gcd}(27,35 \% 27) & & =\operatorname{gcd}(27,8) \\
& =\operatorname{gcd}(8,27 \% 8) & & =\operatorname{gcd}(8,3) \\
& =\operatorname{gcd}(3,8 \% 3) & & =\operatorname{gcd}(3,2) \\
& =\operatorname{gcd}(2,3 \% 2) & & =\operatorname{gcd}(2,1)
\end{aligned}
$$

tableau information

- Solve all equations for the remainder
- Substitute backward
- Compute $\operatorname{gcd}(a, b) ;$ keep

Extended Euclidean Algorithm

$$
\begin{aligned}
\operatorname{gcd}(35,27) & =\operatorname{gcd}(27,35 \% 27) & & =\operatorname{gcd}(27,8) \\
& =\operatorname{gcd}(8,27 \% 8) & & =\operatorname{gcd}(8,3) \\
& =\operatorname{gcd}(3,8 \% 3) & & =\operatorname{gcd}(3,2) \\
& =\operatorname{gcd}(2,3 \% 2) & & =\operatorname{gcd}(2,1) \\
& =\operatorname{gcd}(1,2 \% 1) & & =\operatorname{gcd}(1,0)
\end{aligned}
$$

- Solve all equations for the remainder
- Substitute backward
- Compute $\operatorname{gcd}(a, b)$; keep

Extended Euclidean Algorithm

$$
\begin{aligned}
\operatorname{gcd}(35,27) & =\operatorname{gcd}(27,35 \% 27) & & =\operatorname{gcd}(27,8) \\
& =\operatorname{gcd}(8,27 \% 8) & & =\operatorname{gcd}(8,3) \\
& =\operatorname{gcd}(3,8 \% 3) & & =\operatorname{gcd}(3,2) \\
& =\operatorname{gcd}(2,3 \% 2) & & =\operatorname{gcd}(2,1) \\
& =\operatorname{gcd}(1,2 \% 1) & & =\operatorname{gcd}(1,0)
\end{aligned}
$$

tableau information

- Solve all equations for the remainder
- Substitute backward

$$
\begin{aligned}
& 35=1 \cdot 27+8 \\
& 27=3 \cdot 8+3 \\
& 8=2 \cdot 3+2 \\
& 3=1 \cdot 2+1
\end{aligned}
$$

- Compute $\operatorname{gcd}(a, b)$; keep

Extended Euclidean Algorithm

 tableau information- Solve all equations for the remainder
- Substitute backward

$$
\begin{aligned}
& 35=1 \cdot 27+8 \\
& 27=3 \cdot 8+3 \\
& 8=2 \cdot 3+2 \\
& 3=1 \cdot 2+1
\end{aligned}
$$

- Compute $\operatorname{gcd}(a, b)$; keep

Extended Euclidean Algorithm

 tableau information- Solve all equations for the remainder
- Substitute backward

$$
\begin{aligned}
& 35=1 \cdot 27+8 \\
& 27=3 \cdot 8+3 \\
& 8=2 \cdot 3+2 \\
& 3=1 \cdot 2+1
\end{aligned}
$$

$$
8=35-1 \cdot 27
$$

- Compute $\operatorname{gcd}(a, b)$; keep

Extended Euclidean Algorithm

 tableau information- Solve all equations for the remainder
- Substitute backward

$$
\begin{aligned}
& 35=1 \cdot 27+8 \\
& 27=3 \cdot 8+3 \\
& 8=2 \cdot 3+2 \\
& 3=1 \cdot 2+1
\end{aligned}
$$

$$
8=35-1 \cdot 27
$$

$$
3=27-3 \cdot 8
$$

- Compute $\operatorname{gcd}(a, b)$; keep

Extended Euclidean Algorithm

 tableau information- Solve all equations for the remainder
- Substitute backward

$$
\begin{aligned}
& 35=1 \cdot 27+8 \\
& 27=3 \cdot 8+3 \\
& 8=2 \cdot 3+2 \\
& 3=1 \cdot 2+1
\end{aligned}
$$

$$
\begin{aligned}
& 8=35-1 \cdot 27 \\
& 3=27-3 \cdot 8 \\
& 2=8-2 \cdot 3
\end{aligned}
$$

- Compute $\operatorname{gcd}(a, b)$; keep

Extended Euclidean Algorithm

 tableau information- Solve all equations for the remainder
- Substitute backward

$$
\begin{aligned}
& 35=1 \cdot 27+8 \\
& 27=3 \cdot 8+3 \\
& 8=2 \cdot 3+2 \\
& 3=1 \cdot 2+1
\end{aligned}
$$

$$
\begin{aligned}
& 8=35-1 \cdot 27 \\
& 3=27-3 \cdot 8 \\
& 2=8-2 \cdot 3 \\
& 1=3-1 \cdot 2
\end{aligned}
$$

- Compute $\operatorname{gcd}(a, b)$; keep

Extended Euclidean Algorithm

$$
\begin{aligned}
& 8=35-1 \cdot 27 \\
& 3=27-3 \cdot 8 \\
& 2=8-2 \cdot 3 \\
& 1=3-1 \cdot 2
\end{aligned}
$$

tableau information

- Solve all equations for the remainder
- Substitute backward
- Compute $\operatorname{gcd}(a, b)$; keep

Extended Euclidean Algorithm

$$
\begin{aligned}
& 8=35-1 \cdot 27 \\
& 3=27-3 \cdot 8 \\
& 2=8-2 \cdot 3 \\
& 1=3-1 \cdot 2
\end{aligned}
$$

tableau information

- Solve all equations for the remainder
- Substitute backward
- Compute $\operatorname{gcd}(a, b)$; keep

Extended Euclidean Algorithm

$$
\begin{aligned}
& 8=35-1 \cdot 27 \\
& 3=27-3 \cdot 8 \\
& 2=8-2 \cdot 3 \\
& 1=3-1 \cdot 2
\end{aligned}
$$

tableau information

- Solve all equations for the remainder
- Substitute backward

$$
\begin{aligned}
1 & =3-1 \cdot 2 \\
& =3-1 \cdot(8-2 \cdot 3)
\end{aligned}
$$

- Compute $\operatorname{gcd}(a, b)$; keep

Extended Euclidean Algorithm

$$
\begin{aligned}
& 8=35-1 \cdot 27 \\
& 3=27-3 \cdot 8 \\
& 2=8-2 \cdot 3 \\
& 1=3-1 \cdot 2
\end{aligned}
$$ tableau information

- Solve all equations for the remainder
- Substitute backward

$$
\begin{aligned}
1 & =3-1 \cdot 2 \\
& =3-1 \cdot(8-2 \cdot 3) \\
& =-1 \cdot 8+3 \cdot 3
\end{aligned}
$$

- Compute $\operatorname{gcd}(a, b)$; keep

Extended Euclidean Algorithm

$$
\begin{aligned}
& 8=35-1 \cdot 27 \\
& 3=27-3 \cdot 8 \\
& 2=8-2 \cdot 3 \\
& 1=3-1 \cdot 2
\end{aligned}
$$

tableau information

- Solve all equations for the remainder
- Substitute backward

$$
\begin{aligned}
1 & =3-1 \cdot 2 \\
& =3-1 \cdot(8-2 \cdot 3) \\
& =-1 \cdot 8+3 \cdot 3 \\
& =-1 \cdot 8+3(27-3 \cdot 8)
\end{aligned}
$$

- Compute $\operatorname{gcd}(a, b)$; keep

Extended Euclidean Algorithm

$$
\begin{aligned}
& 8=35-1 \cdot 27 \\
& 3=27-3 \cdot 8 \\
& 2=8-2 \cdot 3 \\
& 1=3-1 \cdot 2
\end{aligned}
$$ tableau information

- Solve all equations for the remainder
- Substitute backward

$$
\begin{aligned}
1 & =3-1 \cdot 2 \\
& =3-1 \cdot(8-2 \cdot 3) \\
& =-1 \cdot 8+3 \cdot 3 \\
& =-1 \cdot 8+3(27-3 \cdot 8) \\
& =3 \cdot 27-10 \cdot 8
\end{aligned}
$$

- Compute $\operatorname{gcd}(a, b)$; keep

Extended Euclidean Algorithm

$$
\begin{aligned}
& 8=35-1 \cdot 27 \\
& 3=27-3 \cdot 8 \\
& 2=8-2 \cdot 3 \\
& 1=3-1 \cdot 2
\end{aligned}
$$ tableau information

- Solve all equations for the remainder
- Substitute backward

$$
\begin{aligned}
1 & =3-1 \cdot 2 \\
& =3-1 \cdot(8-2 \cdot 3) \\
& =-1 \cdot 8+3 \cdot 3 \\
& =-1 \cdot 8+3(27-3 \cdot 8) \\
& =3 \cdot 27-10 \cdot 8 \\
& =3 \cdot 27-10(35-1 \cdot 27)
\end{aligned}
$$

- Compute $\operatorname{gcd}(a, b)$; keep

Extended Euclidean Algorithm

$$
\begin{aligned}
& 8=35-1 \cdot 27 \\
& 3=27-3 \cdot 8 \\
& 2=8-2 \cdot 3 \\
& 1=3-1 \cdot 2
\end{aligned}
$$ tableau information

- Solve all equations for the remainder
- Substitute backward

$$
\begin{aligned}
1 & =3-1 \cdot 2 \\
& =3-1 \cdot(8-2 \cdot 3) \\
& =-1 \cdot 8+3 \cdot 3 \\
& =-1 \cdot 8+3(27-3 \cdot 8) \\
& =3 \cdot 27-10 \cdot 8 \\
& =3 \cdot 27-10(35-1 \cdot 27) \\
& =13 \cdot 27-10 \cdot 35
\end{aligned}
$$

- Compute $\operatorname{gcd}(a, b)$; keep

Extended Euclidean Algorithm

$$
\begin{aligned}
& 8=35-1 \cdot 27 \\
& 3=27-3 \cdot 8 \\
& 2=8-2 \cdot 3 \\
& 1=3-1 \cdot 2
\end{aligned}
$$

When substituting back, you keep the larger of m, n and the number you just substituted.

Don't simplify further! (or you'll lose the form you need)
tableau information

- Solve all equations for the remainder
- Substitute backward

$$
\begin{aligned}
1 & =3-1 \cdot 2 \\
& =3-1 \cdot(8-2 \cdot 3) \\
& =-1 \cdot 8+3 \cdot 3 \\
& =-1 \cdot 8+3(27-3 \cdot 8) \\
& =3 \cdot 27-10 \cdot 8 \\
& =3 \cdot 27-10(35-1 \cdot 27) \\
& =13 \cdot 27-10 \cdot 35
\end{aligned}
$$

Problem 2 - Extended Euclidean Algorithm

a) Find the multiplicative inverse y of $7 \bmod 33$. That is, find y such that $7 y \equiv 1(\bmod 33)$. You should use the extended Euclidean Algorithm. Your answer should be in the range $0 \leq y<33$.
b) Now, solve $7 z \equiv 2(\bmod 33)$ for all of its integer solutions z.

Problem 2 - Extended Euclidean Algorithm

a) Find the multiplicative inverse y of $7 \bmod 33$. That is, find y such that $7 y \equiv 1(\bmod 33)$. You should use the extended Euclidean Algorithm. Your answer should be in the range $0 \leq y<33$.

Problem 2 - Extended Euclidean Algorithm

a) Find the multiplicative inverse y of $7 \bmod 33$. That is, find y such that $7 y \equiv 1(\bmod 33)$. You should use the extended Euclidean Algorithm. Your answer should be in the range $0 \leq y<33$.

First, we find the gcd:

$$
\begin{array}{rlrl}
\operatorname{gcd}(33,7) & =\operatorname{gcd}(7,5) & & 33=7 \cdot 4+5 \\
& =\operatorname{gcd}(5,2) & 7=5 \cdot 1+2 \\
& =\operatorname{gcd}(2,1) & 5=2 \cdot 2+1 \\
& =\operatorname{gcd}(1,0) & & 2=1 \cdot 2+0
\end{array}
$$

Problem 2 - Extended Euclidean Algorithm

a) Find the multiplicative inverse y of $7 \bmod 33$. That is, find y such that $7 y \equiv 1(\bmod 33)$. You should use the extended Euclidean Algorithm. Your answer should be in the range $0 \leq y<33$.

First, we find the gcd:

$$
\begin{aligned}
\operatorname{gcd}(33,7) & =\operatorname{gcd}(7,5) \\
& =\operatorname{gcd}(5,2) \\
& =\operatorname{gcd}(2,1) \\
& =\operatorname{gcd}(1,0)
\end{aligned}
$$

$33=7 \cdot 4+5$
7 = $5 \cdot 1+2$
$5=2 \cdot 2+1$
2 = 1 • $2+0$

Next, we re-arrange the equations
by solving for the remainder:

$$
\begin{aligned}
& 1=5-2 \cdot 2(6) \\
& 2=7-5 \cdot 1(7) \\
& 5=33-7 \cdot 4
\end{aligned}
$$

Problem 2 - Extended Euclidean Algorithm

a) Find the multiplicative inverse y of $7 \bmod 33$. That is, find y such that $7 y \equiv 1(\bmod 33)$. You should use the extended Euclidean Algorithm. Your answer should be in the range $0 \leq y<33$.

First, we find the gcd:

$$
\begin{array}{rlrl}
\operatorname{gcd}(33,7) & =\operatorname{gcd}(7,5) & & 33=7 \cdot 4+5 \\
& =\operatorname{gcd}(5,2) & 7=5 \cdot 1+2 \\
& =\operatorname{gcd}(2,1) & 5=2 \cdot 2+1 \\
& =\operatorname{gcd}(1,0) & 2 & 2 \cdot 1 \cdot 2+0
\end{array}
$$

Next, we re-arrange the equations by solving for the remainder:

$$
\begin{aligned}
& 1=5-2 \cdot 2(6) \\
& 2=7-5 \cdot 1(7) \\
& 5=33-7 \cdot 4
\end{aligned}
$$

Now, we backward substitute into the boxed numbers using the equations:

$$
\begin{aligned}
1 & =5-2 \cdot 2 \\
& =5-(7-5 \cdot 1) \cdot 2 \\
& =3 \cdot 5-7 \cdot 2 \\
& =3 \cdot(33-7 \cdot 4)-7 \cdot 2 \\
& =33 \cdot 3+7 \cdot-14
\end{aligned}
$$

Problem 2 - Extended Euclidean Algorithm

a) Find the multiplicative inverse y of $7 \bmod 33$. That is, find y such that $7 y \equiv 1(\bmod 33)$. You should use the extended Euclidean Algorithm. Your answer should be in the range $0 \leq y<33$.

First, we find the gcd:

$$
\begin{array}{rlll}
\operatorname{gcd}(33,7) & =\operatorname{gcd}(7,5) & & 33=7 \bullet 4+5 \\
& =\operatorname{gcd}(5,2) & 7 & 7 \cdot 5 \cdot 1+2 \\
& =\operatorname{gcd}(2,1) & & 5=2 \cdot 2+1 \\
& =\operatorname{gcd}(1,0) & 2 & 2 \cdot 1 \cdot 2+0
\end{array}
$$

Now, we backward substitute into the boxed numbers using the equations:

$$
\begin{aligned}
1 & =5-2 \cdot 2 \\
& =5-(7-5 \cdot 1) \cdot 2 \\
& =3 \cdot 5-7 \cdot 2 \\
& =3 \cdot(33-7 \cdot 4)-7 \cdot 2 \\
& =33 \cdot 3+7 \cdot-14
\end{aligned}
$$

Next, we re-arrange the equations by solving for the remainder:

$$
\begin{aligned}
& 1=5-2 \cdot 2(6) \\
& 2=7-5 \cdot 1(7) \\
& 5=33-7 \cdot 4
\end{aligned}
$$

So, $1=33 \cdot 3+7 \cdot-14$.
Thus, 33-14=19 is the multiplicative inverse of $7 \bmod 33$

Problem 2 - Extended Euclidean Algorithm

b) Now, solve $7 z \equiv 2(\bmod 33)$ for all of its integer solutions z.

Problem 2 - Extended Euclidean Algorithm

b) Now, solve $7 z \equiv 2(\bmod 33)$ for all of its integer solutions z.

If $7 y \equiv 1(\bmod 33)$, then $2 \cdot 7 y \equiv 2(\bmod 33)$.

Problem 2 - Extended Euclidean Algorithm

b) Now, solve $7 z \equiv 2(\bmod 33)$ for all of its integer solutions z.

If $7 y \equiv 1(\bmod 33)$, then $2 \cdot 7 y \equiv 2(\bmod 33)$.
So, $z \equiv 2 \cdot 19(\bmod 33) \equiv 5(\bmod 33)$. This means that the set of solutions is $\{5+33 k \mid k \in Z\}$

Number Theory

Some Definitions

- Divides:
- For $a, b \in \mathbb{Z}$: $a \mid b$ iff $\exists(k \in \mathbb{Z}) b=k a$
- For integers a and b, we say a divides b if and only if there exists an integer k such that $b=k a$
- Congruence Modulo:
- For $a, b \in \mathbb{Z}, m \in \mathbb{Z}^{+}: a \equiv b(\bmod m)$ iff $m \mid(b-a)$
- For integers a and b and positive integer m, we say a is congruent to b modulo m if and only if m divides $b-a$

Problem 5 - Modular Arithmetic

a) Prove that if $a \mid b$ and $b \mid a$, where a and b are integers, then $a=b$ or $a=-b$.
b) Prove that if $n \mid m$, where n and m are integers greater than 1 , and if $a \equiv b(\bmod m)$, where a and b are integers, then $a \equiv b(\bmod n)$.

Lets walk through part (a) together.

Problem 5 - Modular Arithmetic

a) Prove that if $a \mid b$ and $b \mid a$, where a and b are integers, then $a=b$ or $a=-b$.

Suppose that $a \mid b$ and $b \mid a$, where a, b are integers.
Start with your proof skeleton!

Therefore, it follows that $a=-b$ or $a=b$.

Problem 5 - Modular Arithmetic

a) Prove that if $a \mid b$ and $b \mid a$, where a and b are integers, then $a=b$ or $a=-b$.

Suppose that $a \mid b$ and $b \mid a$, where a, b are integers.
By the definition of divides, we have $a \neq 0, b \neq 0$ and $b=k a, a=j b$ for some integers k, j.

Therefore, it follows that $a=-b$ or $a=b$.

Problem 5 - Modular Arithmetic

a) Prove that if $a \mid b$ and $b \mid a$, where a and b are integers, then $a=b$ or $a=-b$.

Suppose that $a \mid b$ and $b \mid a$, where a, b are integers.
By the definition of divides, we have $a \neq 0, b \neq 0$ and $b=k a, a=j b$ for some integers k, j.
Combining these equations, we see that $a=j(k a)$.

Therefore, it follows that $a=-b$ or $a=b$.

Problem 5 - Modular Arithmetic

a) Prove that if $a \mid b$ and $b \mid a$, where a and b are integers, then $a=b$ or $a=-b$.

Suppose that $a \mid b$ and $b \mid a$, where a, b are integers.
By the definition of divides, we have $a \neq 0, b \neq 0$ and $b=k a, a=j b$ for some integers k, j.
Combining these equations, we see that $a=j(k a)$.
Then, dividing both sides by a, we get $1=j k$. So, $\frac{1}{j}=k$.

Therefore, it follows that $a=-b$ or $a=b$.

Problem 5 - Modular Arithmetic

a) Prove that if $a \mid b$ and $b \mid a$, where a and b are integers, then $a=b$ or $a=-b$.

Suppose that $a \mid b$ and $b \mid a$, where a, b are integers.
By the definition of divides, we have $a \neq 0, b \neq 0$ and $b=k a, a=j b$ for some integers k, j.
Combining these equations, we see that $a=j(k a)$.
Then, dividing both sides by a, we get $1=j k$. So, $\frac{1}{j}=k$.
Note that j and k are integers, which is only possible if $j, k \in\{1,-1\}$.
Therefore, it follows that $a=-b$ or $a=b$.

Problem 5 - Modular Arithmetic

a) Prove that if $a \mid b$ and $b \mid a$, where a and b are integers, then $a=b$ or $a=-b$.
b) Prove that if $n \mid m$, where n and m are integers greater than 1 , and if $a \equiv b(\bmod m)$, where a and b are integers, then $a \equiv b(\bmod n)$.

Problem 5 - Modular Arithmetic

b) Prove that if $n \mid m$, where n and m are integers greater than 1 , and if $a \equiv b(\bmod m)$, where a and b are integers, then $a \equiv b(\bmod n)$.

Problem 5 - Modular Arithmetic

b) Prove that if $n \mid m$, where n and m are integers greater than 1 , and if $a \equiv b(\bmod m)$, where a and b are integers, then $a \equiv b(\bmod n)$.

Let n, m, a, b be integers. Suppose $n \mid m$ with $n, m>1$, and $a \equiv b(\bmod m)$.

Therefore, we have $a \equiv b(\bmod n)$.

Problem 5 - Modular Arithmetic

b) Prove that if $n \mid m$, where n and m are integers greater than 1 , and if $a \equiv b(\bmod m)$, where a and b are integers, then $a \equiv b(\bmod n)$.

Let n, m, a, b be integers. Suppose $n \mid m$ with $n, m>1$, and $a \equiv b(\bmod m)$.
\ldots we have $n \mid(b-a)$.
Therefore, by definition of congruence, we have $a \equiv b(\bmod n)$.

Problem 5 - Modular Arithmetic

b) Prove that if $n \mid m$, where n and m are integers greater than 1 , and if $a \equiv b(\bmod m)$, where a and b are integers, then $a \equiv b(\bmod n)$.

Let n, m, a, b be integers. Suppose $n \mid m$ with $n, m>1$, and $a \equiv b(\bmod m)$.
NOTE: we don't know what C will look like
\ldots we have $b-a=n C$. yet, just that there is SOME integer here!

Because C is an integer, by definition of divides, we have $n \mid(b-a)$.
Therefore, by definition of congruence, we have $a \equiv b(\bmod n)$.

Problem 5 - Modular Arithmetic

b) Prove that if $n \mid m$, where n and m are integers greater than 1 , and if $a \equiv b(\bmod m)$, where a and b are integers, then $a \equiv b(\bmod n)$.

Let n, m, a, b be integers. Suppose $n \mid m$ with $n, m>1$, and $a \equiv b(\bmod m)$.
By definition of divides, we have $m=k n$ for some $k \in \mathbb{Z}$.
\ldots we have $b-a=n C$.
Because C is an integer, by definition of divides, we have $n \mid(b-a)$.
Therefore, by definition of congruence, we have $a \equiv b(\bmod n)$.

Problem 5 - Modular Arithmetic

b) Prove that if $n \mid m$, where n and m are integers greater than 1 , and if $a \equiv b(\bmod m)$, where a and b are integers, then $a \equiv b(\bmod n)$.

Let n, m, a, b be integers. Suppose $n \mid m$ with $n, m>1$, and $a \equiv b(\bmod m)$.
By definition of divides, we have $m=k n$ for some $k \in \mathbb{Z}$.
By definition of congruence, we have $m \mid a-b$, which means that $a-b=m j$ for some $j \in \mathbb{Z}$.
\ldots we have $b-a=n C$.
Because C is an integer, by definition of divides, we have $n \mid(b-a)$.
Therefore, by definition of congruence, we have $a \equiv b(\bmod n)$.

Problem 5 - Modular Arithmetic

b) Prove that if $n \mid m$, where n and m are integers greater than 1 , and if $a \equiv b(\bmod m)$, where a and b are integers, then $a \equiv b(\bmod n)$.

Let n, m, a, b be integers. Suppose $n \mid m$ with $n, m>1$, and $a \equiv b(\bmod m)$.
By definition of divides, we have $m=k n$ for some $k \in \mathbb{Z}$.
By definition of congruence, we have $m \mid a-b$, which means that $a-b=m j$ for some $j \in \mathbb{Z}$.
Combining the two equations, we see that $a-b=(k n j)=n(k j)$.
... we have $b-a=n C$.
Because C is an integer, by definition of divides, we have $n \mid(b-a)$.
Therefore, by definition of congruence, we have $a \equiv b(\bmod n)$.

Problem 5 - Modular Arithmetic

b) Prove that if $n \mid m$, where n and m are integers greater than 1 , and if $a \equiv b(\bmod m)$, where a and b are integers, then $a \equiv b(\bmod n)$.

Let n, m, a, b be integers. Suppose $n \mid m$ with $n, m>1$, and $a \equiv b(\bmod m)$.
By definition of divides, we have $m=k n$ for some $k \in \mathbb{Z}$.
By definition of congruence, we have $m \mid a-b$, which means that $a-b=m j$ for some $j \in \mathbb{Z}$.
Combining the two equations, we see that $a-b=(k n j)=n(k j)$.
Equivalently, we have $b-a=n(-k j)$.
Because C is an integer, by definition of divides, we have $n \mid(b-a)$.
Therefore, by definition of congruence, we have $a \equiv b(\bmod n)$.

Problem 5 - Modular Arithmetic

b) Prove that if $n \mid m$, where n and m are integers greater than 1 , and if $a \equiv b(\bmod m)$, where a and b are integers, then $a \equiv b(\bmod n)$.

Let n, m, a, b be integers. Suppose $n \mid m$ with $n, m>1$, and $a \equiv b(\bmod m)$.
By definition of divides, we have $m=k n$ for some $k \in \mathbb{Z}$.
By definition of congruence, we have $m \mid a-b$, which means that $a-b=m j$ for some $j \in \mathbb{Z}$.
Combining the two equations, we see that $a-b=(k n j)=n(k j)$.
Equivalently, we have $b-a=n(-k j)$.
Because $-k j$ is an integer, by definition of divides, we have $n I(b-a)$.
Therefore, by definition of congruence, we have $a \equiv b(\bmod n)$.

That's All, Folks!

Thanks for coming to section this week! Any questions?

