CSE 311 Section 5

Number Theory & Induction

Administrivia

Announcements & Reminders

e HW3
o If you think something was graded incorrectly, submit a regrade request!

e HW4 due tomorrow 10PM on Gradescope
o Use late days if you need them!

e HW5
o 2 parts!
o BOTH PARTS due Wednesday 11/8 @ 10pm
o You have extra time on this homework (1.5 weeks)

Greatest Common Divisor

Some Definitions

e Greatest Common Divisor (GCD):
o The Greatest Common Divisor of a and b (gcd(a, b)) is the
largest integer ¢ such that c|la and c|b

e Multiplicative Inverse:

o The multiplicative inverse of a (mod n) is an integer b such that
ab =1 (mod n)

Problem 1 - Warm-Up

a) Calculate gcd(100, 50).
b) Calculate gcd(17, 31)
c) Find the multiplicative inverse of 6 (mod 7).

d) Does 49 have a multiplicative inverse (mod 7)?

Try this problem with the people around you, and then we’ll go over it together!

Problem 1 - Warm-Up

a) Calculate gcd(100, 50).
b) Calculate gcd(17, 31)
c) Find the multiplicative inverse of 6 (mod 7).

d) Does 49 have a multiplicative inverse (mod 7)?

Problem 1 - Warm-Up

a) Calculate gcd(100, 50).
50
b) Calculate gcd(17, 31)

c) Find the multiplicative inverse of 6 (mod 7).

d) Does 49 have a multiplicative inverse (mod 7)?

Problem 1 - Warm-Up
a) Calculate gcd(100, 50).

50
b) Calculate gcd(17, 31)

1

c) Find the multiplicative inverse of 6 (mod 7).

d) Does 49 have a multiplicative inverse (mod 7)?

Problem 1 - Warm-Up

a) Calculate gcd(100, 50).
50
b) Calculate gcd(17, 31)
1
c) Find the multiplicative inverse of 6 (mod 7).

6

d) Does 49 have a multiplicative inverse (mod 7)?

Problem 1 - Warm-Up

a) Calculate gcd(100, 50).
50
b) Calculate gcd(17, 31)
1
c) Find the multiplicative inverse of 6 (mod 7).

6

d) Does 49 have a multiplicative inverse (mod 7)?

It does not. Intuitively, this is because 49x for any x is going to be 0 mod 7,
which means it can never be 1.

Extended Euclidean Algorithm

Finding GCD

GCD Facts: public int GCD(int m, int n){

i (m<n) {
If a and b are positive int temp = m;
integers, then: :;Eémp;
+
while(n !'= 0) {
gcd(a, b) = ged(b, a%b) int rem = m % n;
m=n;
=t ;
gcd(a,0) =a } e
return m;

gcd(a, b) = ged(b, a%b)
Euclid’'s Algorithm

gcd(660,126)

gcd(a, b) = ged(b, a%b)
Euclid’'s Algorithm

cd(660,126) = gcd(126, 660 % 126) = gcd(126, 30)

gcd(a, b) = ged(b, a%b)
Euclid’'s Algorithm

5cd(660,126) = gcd(126, 660 % 126) = gcd(126, 30)
=gcd(30, 126 % 30) =gcd(30, 6)

gcd(a, b) = ged(b, a%b)

Euclid’'s Algorithm
gcd(660,126) = gcd(126, 660 % 126) = gcd(126, 30)
=gcd(30, 126 % 30) =gcd(30, 6)

=gcd(6, 30 % 6) =gcd(6, 0)

gcd(a, b) = ged(b, a%b)

Euclid’'s Algorithm
gcd(660,126) = gcd(126, 660 % 126) = gcd(126, 30)
=gcd(30, 126 % 30) =gcd(30, 6)
=gcd(6, 30 % 6) =gcd(6, 0)

=6

Euclid’'s Algorithm

5cd(660,126) = gcd(126, 660 % 126)
= gcd(30, 126 % 30)
=gcd(6, 30 % 6)
=6

Tableau form

660 = 5 - 126 + 30
126 = 4 - 30 + 6
30 =5 -6 + 0

gcd(a, b) = ged(b, a%b)

=gcd(126, 30)
=gcd(30, 6)
= gced(6, 0)

Bézout's Theorem

e Bézout’s Theorem:
o If a and b are positive integers, then there exist integers s and t
such that
gcd(a,b) = sa+tb

e We’re not going to prove this theorem in section though,
because it’s hard and ugly

Extended Euclidean Algorithm

Bézout’s Theorem tells us that gcd(a, b) = sa + tb.
To find the s, t we can use the Extended Euclidean Algorithm.
e Step 1: compute gcd(a, b); keep tableau information

e Step 2: solve all equations for the remainder
e Step 3: substitute backward

e Compute gcd(a,b); keep
tableau information

e Solve all equations for the
remainder

gcd(35,27) e Substitute backward

Extended Euclidean Algorithm

e Compute gcd(a,b); keep
tableau information

e Solve all equations for the
remainder

ng(35,27) = ng(27, 350/027) = ng(27,8) e Substitute backward

Extended Euclidean Algorithm

e Compute gcd(a,b); keep
tableau information

e Solve all equations for the
remainder

ng(35,27) = ng(27, 350/027) = ng(27,8) e Substitute backward
=gcd(8, 27%8) =gcd(8, 3)

Extended Euclidean Algorithm

e Compute gcd(a,b); keep
tableau information

e Solve all equations for the
remainder

ng(35,27) = ng(27, 350/027) = ng(27,8) e Substitute backward
=gcd(8, 27%8) =gcd(8, 3)
= gcd(3, 8%3) =gcd(3, 2)

Extended Euclidean Algorithm

e Compute gcd(a,b); keep
tableau information
e Solve all equations for the

Extended Euclidean Algorithm

remainder
gcd(35,27) =gcd(27,35%27) =gcd(27,8) e Substitute backward
=gcd(8, 27%8) =gcd(8, 3)
= gcd(3, 8%3) =gcd(3, 2)
=gcd(2, 3%2) =gcd(2,1)

e Compute gcd(a,b); keep
tableau information
e Solve all equations for the

Extended Euclidean Algorithm

remainder
gcd(35,27) =gcd(27,35%27) =gcd(27,8) e Substitute backward
=gcd(8, 27%8) =gcd(8, 3)
= gcd(3, 8%3) =gcd(3, 2)
=gcd(2, 3%2) =gcd(2,1)
=gcd(1, 2%]1) =gcd(1,0)

e Compute gcd(a,b); keep
tableau information
e Solve all equations for the

Extended Euclidean Algorithm

remainder
gcd(35,27) =gcd(27,35%27) =gcd(27,8) e Substitute backward
=gcd(8, 27%8) =gcd(8, 3)
= gcd(3, 8%3) =gcd(3, 2)
=gcd(2, 3%2) =gcd(2,1)
= ged(1, 2%1) = gcd(1,0) 35 = 1-27 + 8
27 = 38 + 3
8 =23 + 2
3 =12 + 1

e Compute gcd(a,b); keep
tableau information

e Solve all equations for the
remainder

e Substitute backward

Extended Euclidean Algorithm

35 = 1-27 + 8
27 = 3-8 + 3
8 =23 + 2
3 =12 + 1

e Compute gcd(a,b); keep
tableau information

e Solve all equations for the
remainder

e Substitute backward

Extended Euclidean Algorithm

35 = 1-27 + 8 8 = 35 - 1-27
27 = 3-8 + 3
8 =23 + 2
3 =12 + 1

e Compute gcd(a,b); keep
tableau information

e Solve all equations for the
remainder

e Substitute backward

Extended Euclidean Algorithm

35 = 1-27 + 8 8 = 35 - 1-27
27 = 3-8 + 3 3 =27 - 3-8
8 =23 + 2
3 =12 + 1

e Compute gcd(a,b); keep
tableau information

e Solve all equations for the
remainder

e Substitute backward

Extended Euclidean Algorithm

35 = 1-27 + 8 8 = 35 - 1-27
27 = 3-8 + 3 3 =27 - 3-8
8 =23 + 2 2 =8 - 23
3 =12 + 1

Extended Euclidean Algorithm

35
27

=N W
N W 00

N

+ + + +
= N W

H N W

35
27

=N W R
N W

Compute gcd(a, b); keep
tableau information

e Solve all equations for the

remainder
Substitute backward

N
~

e Compute gcd(a,b); keep
tableau information

e Solve all equations for the
remainder

Extended Euclidean Algorithm

8 =35 - 1-27 e Substitute backward
3 =27 - 3°8
2 =8 - 2°3
1 =3 - 12

e Compute gcd(a,b); keep
tableau information

e Solve all equations for the
remainder

Extended Euclidean Algorithm

8 =35 - 1-27 e Substitute backward
3 =27 - 3°8

2 =8 - 2-3 1=3-1-2

1=3 - 1.2

e Compute gcd(a,b); keep
tableau information

e Solve all equations for the
remainder

Extended Euclidean Algorithm

8 =35 - 1-27 e Substitute backward
3 =27 - 3°8

2 =8 - 2-3 1 =3-1:2

1 12

=3 -1 =3 -1-(8 - 2:3)

Extended Euclidean Algorithm

H N W

35
27
8
3

=N W
N W

N

-

3 - 12
3 -1-(8 -
-1-8 + 3-3

Compute gcd(a, b); keep
tableau information

e Solve all equations for the

remainder
Substitute backward

2-3)

e Compute gcd(a,b); keep
tableau information

e Solve all equations for the
remainder

Extended Euclidean Algorithm

8 =35 - 1-27 e Substitute backward
3 =27 - 3°8
2 =8 - 2-3 1=3-1-2
1 =3 - 12 =3 -1-(8 - 2:3)
- -1-8 + 3-3

= -1-8 + 3(27 - 3-8)

e Compute gcd(a,b); keep
tableau information

e Solve all equations for the
remainder

Extended Euclidean Algorithm

8 =35 - 1-27 e Substitute backward
3 =27 - 3°8
2 =8 - 2-3 1=3-1-2
1 =3 - 12 =3 -1-(8 - 2:3)
- -1-8 + 3-3

= -1-8 + 3(27 - 3-8)
= 3:27 - 10-8

e Compute gcd(a,b); keep
tableau information

e Solve all equations for the
remainder

Extended Euclidean Algorithm

8 = 35 - 1-27 e Substitute backward
3 =27 - 3-8
2 =8 - 2-3 1=3-1-2
1 =3 -1-2 =3 -1-(8 - 2-3)
= -1-8 + 3-3
= -1:8 + 3(27 - 3:8)
= 327 - 108

= 3-27 - 10(35 - 1-27)

e Compute gcd(a,b); keep
tableau information

e Solve all equations for the
remainder

Extended Euclidean Algorithm

8 = 35 - 1-27 e Substitute backward
3 =27 - 3-8
2 =8 - 2-3 1=3-1-2
1 =3 -1-2 =3 -1-(8 - 2-3)
= -1-8 + 3-3
= -1:8 + 3(27 - 3:8)
= 327 - 108

= 3-27 - 10(35 - 1-27)
= 13-27 - 10-35

e Compute gcd(a,b); keep
tableau information

e Solve all equations for the
remainder

Extended Euclidean Algorithm

8 =35 - 1-27 e Substitute backward
3 =27 - 3-8
2 =8 - 23 1 =3 - 1+2
1 =3 - 12 =3 -1-(8 - 2:3)
= -1-8 + 33
When substituting back, you = -1-8 + 3(27 - 3-8)
keep the larger of m, n and the 3
number you just substituted. = 327 - 10°8
= 327 - 10(35 - 1-27)
Don’t simplify further! (or = 1327 - 1035

you’ll lose the form you need)

Problem 2 - Extended Euclidean Algorithm

a) Find the multiplicative inverse y of 7 mod 33. That is, find y such that
7y = 1 (mod 33). You should use the extended Euclidean Algorithm. Your
answer should bein therange 0 <y <33.

b) Now, solve 7z = 2 (mod 33) for all of its integer solutions z.

Try this problem with the people around you, and then we’ll go over it together!

Problem 2 - Extended Euclidean Algorithm

a) Find the multiplicative inverse y of 7 mod 33. That is, find y such that 7y = 1 (mod 33). You
should use the extended Euclidean Algorithm. Your answer should be in the range 0 <y <33.

Problem 2 - Extended Euclidean Algorithm

a) Find the multiplicative inverse y of 7 mod 33. That is, find y such that 7y = 1 (mod 33). You
should use the extended Euclidean Algorithm. Your answer should be in the range 0 <y <33.

First, we find the gcd:

gcd(33,7) = gcd(7,5) 33 =7 ¢ 4 + 5
= gcd(5,2) 7 =51+ 2
= gcd(2,1) 5 =2 2 +1
= gcd(1,0) 2 =1 ¢ 2 +0

Problem 2 - Extended Euclidean Algorithm

a) Find the multiplicative inverse y of 7 mod 33. That is, find y such that 7y = 1 (mod 33). You
should use the extended Euclidean Algorithm. Your answer should be in the range 0 <y <33.

First, we find the gcd: Next, we re-arrange the equations
gcd(33,7) = gcd(7,5) 33 =7 ¢ 4 + 5 by solving for the remainder:

= gcd(5,2) 7 =51+ 2 1=5-2+2(6)

= gcd(2,1) 5 =2 2 + 1 2=7-541(7)

= gcd(1,0) 2 =12 +0 5=33-T7+4

Problem 2 - Extended Euclidean Algorithm

a) Find the multiplicative inverse y of 7 mod 33. That is, find y such that 7y = 1 (mod 33). You
should use the extended Euclidean Algorithm. Your answer should be in the range 0 <y <33.

First, we find the gcd: Next, we re-arrange the equations
gcd(33,7) = gcd(7,5) 33 =7 ¢ 4 + 5 by solving for the remainder:

= gcd(5,2) 7 =51+ 2 1=5-2+2(6)

= gcd(2,1) 5 =2 2 + 1 2=7-541(7)

= gcd(1,0) 2 =12 +0 5=33-T7+4

Now, we backward substitute into the boxed numbers using
the equations:
1=5-2.2
=5-(7-5¢1)s2
=3e5-T7+2
=3e(33-T74)=7+2
=33e3+7-14

Problem 2 - Extended Euclidean Algorithm

a) Find the multiplicative inverse y of 7 mod 33. That is, find y such that 7y = 1 (mod 33). You
should use the extended Euclidean Algorithm. Your answer should be in the range 0 <y <33.

First, we find the gcd: Next, we re-arrange the equations
gcd(33,7) = gcd(7,5) 33 =7 ¢ 4 + 5 by solving for the remainder:
= gcd(5,2) 7 =51+ 2 1=5-2+2(6)
= gcd(2,1) 5 =2 e 2+ 1 2=7-5+1(7)
= gcd(1,0) 2 =12 +0 5=33-7+4
Now, we backward substitute into the boxed numbers using
the equations:
1=5-2.2 S0,1=333+7+-14.
:5_(7_5,1),2 Thus,33—l4:l9isthe
=3e5-T702 multiplicative inverse of
=3¢(33-7+4)-T+2 7 mod 33

=33¢3+7.-14

Problem 2 - Extended Euclidean Algorithm

b) Now,solve 7z = 2 (mod 33) for all of its integer solutions z.

Problem 2 - Extended Euclidean Algorithm

b) Now,solve 7z = 2 (mod 33) for all of its integer solutions z.

If 7y = 1(mod 33), then 2 - 7y = 2(mod 33).

Problem 2 - Extended Euclidean Algorithm

b) Now,solve 7z = 2 (mod 33) for all of its integer solutions z.

If 7y = 1(mod 33), then 2 - 7y = 2(mod 33).

So,z=2-19(mod 33) = 5(mod 33). This means that the set of
solutions is {5+ 33k | k € Z}

Number Theory

Some Definitions

e Divides:
o Fora,b€Z:a|biff A(k € Z) b = ka
o Forintegers a and b, we say a divides b if and only if there exists
an integer k such thatb = ka

e Congruence Modulo:
o Fora,b €Zm€Z ":a=b (modm)iffm| (b—a)
o Forintegers a and b and positive integer m, we say a is
congruent to b modulo mif and only if m divides b — a

Problem 5 - Modular Arithmetic

a) Provethatifa | bandb | a,wherea and b are integers, thena = b or
a = —b.

b) Provethatifn | m, wheren and m are integers greater than 1, and if
a = b (mod m), where a and b are integers, then a = b (mod n).

Lets walk through part (a) together.

Problem 5 - Modular Arithmetic

a) Provethatifa | bandb | a,wherea and b are integers, thena = b or
a = —b.

Supposethata | b and b | a, where a, b are integers. Start with your
proof skeleton!

Therefore, it follows thata = —b ora = b.

Problem 5 - Modular Arithmetic

a) Provethatifa | bandb | a,wherea and b are integers, thena = b or
a = —b.

Supposethata | b and b | a, where a, b are integers.

By the definition of divides, we havea # 0,b + 0 and b = ka, a = jb for some integers
k,j.

Therefore, it follows thata = —b ora = b.

Problem 5 - Modular Arithmetic

a) Provethatifa | bandb | a,wherea and b are integers, thena = b or
a = —b.

Supposethata | b and b | a, where a, b are integers.
By the definition of divides, we havea # 0,b + 0 and b = ka, a = jb for some integers

k,j.
Combining these equations, we see thata = j(ka).

Therefore, it follows thata = —b ora = b.

Problem 5 - Modular Arithmetic

a) Provethatifa | bandb | a,wherea and b are integers, thena = b or
a = —b.

Supposethata | b and b | a, where a, b are integers.

By the definition of divides, we havea # 0,b + 0 and b = ka, a = jb for some integers
k,j.

Combining these equations, we see thata = j(ka).

Then, dividing both sides by a, we get 1 = jk. So,% = k.

Therefore, it follows thata = —b ora = b.

Problem 5 - Modular Arithmetic

a) Provethatifa | bandb | a,wherea and b are integers, thena = b or
a = —b.

Supposethata | b and b | a, where a, b are integers.

By the definition of divides, we havea # 0,b + 0 and b = ka, a = jb for some integers
k,j.

Combining these equations, we see thata = j(ka).

Then, dividing both sides by a, we get 1 = jk. So,% = k.

Note that j and k are integers, which is only possibleif j, k € {1, —1}.

Therefore, it follows thata = —b ora = b.

Problem 5 - Modular Arithmetic

a) Provethatifa | bandb | a,wherea and b are integers, thena = b or
a = —b.

b) Provethatifn | m, wheren and m are integers greater than 1, and if
a = b (mod m), where a and b are integers, then a = b (mod n).

Now try part (b) with the people around you, and then we’ll go over it together!

Problem 5 - Modular Arithmetic

b) Provethatifn | m, where n and m are integers greater than 1, and if
a = b (mod m), where a and b are integers, then a = b (mod n).

Problem 5 - Modular Arithmetic

b) Provethatifn | m, where n and m are integers greater than 1, and if
a = b (mod m), where a and b are integers, then a = b (mod n).

Letn,m, a, b be integers. Supposen | mwithn,m > 1,and a = b (mod m).

Therefore, we have a = b (mod n).

Problem 5 - Modular Arithmetic

b) Provethatifn | m, where n and m are integers greater than 1, and if
a = b (mod m), where a and b are integers, then a = b (mod n).

Letn,m, a, b be integers. Supposen | mwithn,m > 1,and a = b (mod m).

...wehaven | (b — a).

Therefore, by definition of congruence, we have a = b (mod n).

Problem 5 - Modular Arithmetic

b) Provethatifn | m, where n and m are integers greater than 1, and if
a = b (mod m), where a and b are integers, then a = b (mod n).

Letn,m, a, b be integers. Supposen | mwithn,m > 1,and a = b (mod m).

NOTE: we don’t know what C will look like
o yet, just that there is SOME integer here!
...wehaveb —a =ncC.
Because C is an integer, by definition of divides, we haven | (b — a).

Therefore, by definition of congruence, we have a = b (mod n).

Problem 5 - Modular Arithmetic

b) Provethatifn | m, where n and m are integers greater than 1, and if
a = b (mod m), where a and b are integers, then a = b (mod n).

Letn,m, a, b be integers. Supposen | mwithn,m > 1,and a = b (mod m).
By definition of divides, we have m = kn for some k € Z.

...we haveb —a =ncC.
Because C is an integer, by definition of divides, we haven | (b — a).

Therefore, by definition of congruence, we have a = b (mod n).

Problem 5 - Modular Arithmetic

b) Provethatifn | m, where n and m are integers greater than 1, and if
a = b (mod m), where a and b are integers, then a = b (mod n).

Letn,m, a, b be integers. Supposen | mwithn,m > 1,and a = b (mod m).

By definition of divides, we have m = kn for some k € Z.

By definition of congruence, we havem | a — b, which means that a — b = mj for some
j €L

...we haveb —a =ncC.
Because C is an integer, by definition of divides, we haven | (b — a).

Therefore, by definition of congruence, we have a = b (mod n).

Problem 5 - Modular Arithmetic

b) Provethatifn | m, where n and m are integers greater than 1, and if
a = b (mod m), where a and b are integers, then a = b (mod n).

Letn,m, a, b be integers. Supposen | mwithn,m > 1,and a = b (mod m).

By definition of divides, we have m = kn for some k € Z.

By definition of congruence, we havem | a — b, which means that a — b = mj for some
j €L

Combining the two equations, we see thata — b = (knj) = n(kj).

...we haveb —a =ncC.

Because C is an integer, by definition of divides, we haven | (b — a).

Therefore, by definition of congruence, we have a = b (mod n).

Problem 5 - Modular Arithmetic

b) Provethatifn | m, where n and m are integers greater than 1, and if
a = b (mod m), where a and b are integers, then a = b (mod n).

Letn,m, a, b be integers. Supposen | mwithn,m > 1,and a = b (mod m).

By definition of divides, we have m = kn for some k € Z.

By definition of congruence, we havem | a — b, which means that a — b = mj for some
j €L

Combining the two equations, we see thata — b = (knj) = n(kj).

Equivalently, we have b — a = n(—kj).

Because C is an integer, by definition of divides, we haven | (b — a).

Therefore, by definition of congruence, we have a = b (mod n).

Problem 5 - Modular Arithmetic

b) Provethatifn | m, where n and m are integers greater than 1, and if
a = b (mod m), where a and b are integers, then a = b (mod n).

Letn,m, a, b be integers. Supposen | mwithn,m > 1,and a = b (mod m).

By definition of divides, we have m = kn for some k € Z.

By definition of congruence, we havem | a — b, which means that a — b = mj for some
j €L

Combining the two equations, we see thata — b = (knj) = n(kj).

Equivalently, we have b — a = n(—kj).

Because —kj is an integer, by definition of divides, we haven | (b — a).

Therefore, by definition of congruence, we have a = b (mod n).

That’s All, Folks!

Thanks for coming to section this week!
Any questions?

	Intro
	Slide 1: CSE 311 Section 5

	Administrivia
	Slide 2: Administrivia
	Slide 3: Announcements & Reminders

	GCD
	Slide 4: Greatest Common Divisor
	Slide 5: Some Definitions

	1
	Slide 6: Problem 1 – Warm-Up
	Slide 7: Problem 1 – Warm-Up
	Slide 8: Problem 1 – Warm-Up
	Slide 9: Problem 1 – Warm-Up
	Slide 10: Problem 1 – Warm-Up
	Slide 11: Problem 1 – Warm-Up

	Number Theory
	Slide 12: Extended Euclidean Algorithm
	Slide 13: Finding GCD
	Slide 14: Euclid’s Algorithm
	Slide 15: Euclid’s Algorithm
	Slide 16: Euclid’s Algorithm
	Slide 17: Euclid’s Algorithm
	Slide 18: Euclid’s Algorithm
	Slide 19: Euclid’s Algorithm
	Slide 20: Bézout’s Theorem
	Slide 21: Extended Euclidean Algorithm
	Slide 22: Extended Euclidean Algorithm
	Slide 23: Extended Euclidean Algorithm
	Slide 24: Extended Euclidean Algorithm
	Slide 25: Extended Euclidean Algorithm
	Slide 26: Extended Euclidean Algorithm
	Slide 27: Extended Euclidean Algorithm
	Slide 28: Extended Euclidean Algorithm
	Slide 29: Extended Euclidean Algorithm
	Slide 30: Extended Euclidean Algorithm
	Slide 31: Extended Euclidean Algorithm
	Slide 32: Extended Euclidean Algorithm
	Slide 33: Extended Euclidean Algorithm
	Slide 34: Extended Euclidean Algorithm
	Slide 35: Extended Euclidean Algorithm
	Slide 36: Extended Euclidean Algorithm
	Slide 37: Extended Euclidean Algorithm
	Slide 38: Extended Euclidean Algorithm
	Slide 39: Extended Euclidean Algorithm
	Slide 40: Extended Euclidean Algorithm
	Slide 41: Extended Euclidean Algorithm
	Slide 42: Extended Euclidean Algorithm

	2
	Slide 43: Problem 2 – Extended Euclidean Algorithm
	Slide 44: Problem 2 – Extended Euclidean Algorithm
	Slide 45: Problem 2 – Extended Euclidean Algorithm
	Slide 46: Problem 2 – Extended Euclidean Algorithm
	Slide 47: Problem 2 – Extended Euclidean Algorithm
	Slide 48: Problem 2 – Extended Euclidean Algorithm
	Slide 49: Problem 2 – Extended Euclidean Algorithm
	Slide 50: Problem 2 – Extended Euclidean Algorithm
	Slide 51: Problem 2 – Extended Euclidean Algorithm

	Number Theory
	Slide 52: Number Theory
	Slide 53: Some Definitions

	5a
	Slide 54: Problem 5 – Modular Arithmetic
	Slide 55: Problem 5 – Modular Arithmetic
	Slide 56: Problem 5 – Modular Arithmetic
	Slide 57: Problem 5 – Modular Arithmetic
	Slide 58: Problem 5 – Modular Arithmetic
	Slide 59: Problem 5 – Modular Arithmetic

	5b
	Slide 60: Problem 5 – Modular Arithmetic
	Slide 61: Problem 5 – Modular Arithmetic
	Slide 62: Problem 5 – Modular Arithmetic
	Slide 63: Problem 5 – Modular Arithmetic
	Slide 64: Problem 5 – Modular Arithmetic
	Slide 65: Problem 5 – Modular Arithmetic
	Slide 66: Problem 5 – Modular Arithmetic
	Slide 67: Problem 5 – Modular Arithmetic
	Slide 68: Problem 5 – Modular Arithmetic
	Slide 69: Problem 5 – Modular Arithmetic

	Outro
	Slide 70: That’s All, Folks!

