Section 05: Solutions

1. GCD

(a) Calculate $\operatorname{gcd}(100,50)$.

Solution:

```
50
```

(b) Calculate $\operatorname{gcd}(17,31)$.

Solution:

```
1
```

(c) Find the multiplicative inverse of $6(\bmod 7)$.

Solution:

6
(d) Does 49 have an multiplicative inverse $(\bmod 7)$?

Solution:

It does not. Intuitively, this is because 49x for any x is going to be 0 mod 7 , which means it can never be 1.

2. Extended Euclidean Algorithm

(a) Find the multiplicative inverse y of $7 \bmod 33$. That is, find y such that $7 y \equiv 1(\bmod 33)$. You should use the extended Euclidean Algorithm. Your answer should be in the range $0 \leq y<33$.

Solution:
First, we find the gcd:

$$
\begin{align*}
\operatorname{gcd}(33,7) & =\operatorname{gcd}(7,5) \tag{1}\\
& =\operatorname{gcd}(5,2) \tag{2}\\
& =\operatorname{gcd}(2,1) \tag{3}\\
& =\operatorname{gcd}(1,0) \tag{4}\\
& =1 \tag{5}
\end{align*}
$$

$$
\begin{aligned}
33 & =7 \cdot 4+5 \\
7 & =5 \cdot 1+2 \\
5 & =2 \cdot 2+1 \\
2 & =1 \bullet 2+0
\end{aligned}
$$

Next, we re-arrange equations (1) - (3) by solving for the remainder:

$$
\begin{align*}
& 1=5-2 \cdot 2 \tag{6}\\
& 2=7-5 \bullet 1 \tag{7}\\
& 5=33-7 \bullet 4 \tag{8}
\end{align*}
$$

Now, we backward substitute into the boxed numbers using the equations:

$$
\begin{aligned}
1 & =5-2 \cdot 2 \\
& =5-(7-5 \cdot 1) \bullet 2 \\
& =3 \bullet 5-7 \bullet 2 \\
& =3 \bullet(33-7 \bullet 4)-7 \bullet 2 \\
& =33 \bullet 3+7 \bullet-14
\end{aligned}
$$

So, $1=33 \bullet 3+7 \bullet-14$. Thus, $33-14=19$ is the multiplicative inverse of $7 \bmod 33$.
(b) Now, solve $7 z \equiv 2(\bmod 33)$ for all of its integer solutions z.

Solution:

We already computed that 19 is the multiplicative inverse of $7 \bmod 33$. That is, $19 \cdot 7 \equiv 1(\bmod 33)$.
If z is a solution to $7 z \equiv 2(\bmod 33)$, then multiplying by 19 on both sides, we have $19 \cdot 7 \cdot z \equiv 19 \cdot 2(\bmod 33)$.
Substituting $19 \cdot 7 \equiv 1(\bmod 33)$ into this on the left gives $1 \cdot z \equiv z \equiv 19 \cdot 2 \equiv 38 \equiv 5(\bmod 33)$.
This shows that every solution z is congruent to 5 . In other words, the set of solutions is $\{5+33 k \mid k \in \mathbb{Z}\}$.

3. Euclid's Lemma ${ }^{1}$

(a) Show that if an integer p divides the product of two integers a and b, and $\operatorname{gcd}(p, a)=1$, then p divides b.

Solution:

Suppose that $p \mid a b$ and $\operatorname{gcd}(p, a)=1$ for integers a, b, and p. By Bezout's theorem, since $\operatorname{gcd}(p, a)=1$, there exist integers r and s such that

$$
r p+s a=1
$$

Since $p \mid a b$, by the definition of divides there exists an integer k such that $p k=a b$. By multiplying both sides of $r p+s a=1$ by b we have,

$$
\begin{aligned}
r p b+s(a b) & =b \\
r p b+s(p k) & =b \\
p(r b+s k) & =b
\end{aligned}
$$

Since r, b, s, k are all integers, $(r b+s k)$ is also an integer. By definition we have $p \mid b$.

[^0](b) Show that if a prime p divides $a b$ where a and b are integers, then $p \mid a$ or $p \mid b$. (Hint: Use part (a))

Solution:

Suppose that $p \mid a b$ for prime number p and integers a, b. There are two cases.
Case 1: $\operatorname{gcd}(p, a)=1$
In this case, $p \mid b$ by part (a).
Case 2: $\operatorname{gcd}(p, a) \neq 1$
In this case, p and a share a common positive factor greater than 1 . But since p is prime, its only positive factors are 1 and p, meaning $\operatorname{gcd}(p, a)=p$. This says p is a factor of a, that is, $p \mid a$.

In both cases we've shown that $p \mid a$ or $p \mid b$.

4. Prime Checking

You wrote the following code, isPrime(int n) which you are confident returns true if and only if n is prime (we assume its input is always positive).

```
public boolean isPrime(int n) {
    int potentialDiv = 2;
    while (potentialDiv < n) {
        if (n % potenttialDiv == 0)
            return false;
        potentialDiv++;
    }
    return true;
}
```

Your friend suggests replacing potentialDiv < n with potentialDiv <= Math.sqrt(n). In this problem, you'll argue the change is ok. That is, your method still produces the correct result if n is a positive integer.
We will use "nontrivial divisor" to mean a factor that isn't 1 or the number itself. Formally, a positive integer k being a "nontrivial divisor" of n means that $k \mid n, k \neq 1$ and $k \neq n$. Claim: when a positive integer n has a nontrivial divisor, it has a nontrivial divisor at most \sqrt{n}.
(a) Let's try to break down the claim and understand it through examples. Show an example (a specific n and k) of a nontrivial divisor, of a divisor that is not nontrivial, and of a number with only trivial divisors. Solution:

Some examples of "trivial" divisors: (1 of 15), (3 of 3)
Some examples of nontrivial divisors: (3 of 15), (9 of 81)
A number with only trivial divisor is just a prime number: it has no factors.
(b) Prove the claim. Hint: you may want to divide into two cases!

Solution:

Let k be a nontrivial divisor of n. Since k is a divisor, $n=k c$ for some integer c. Observe that c is also nontrivial, since if c were 1 or n then k would have to be n or 1 .

We now have two cases:
Case 1: $k \leq \sqrt{n}$
If $k \leq \sqrt{n}$, then we're done because k is the desired nontrivial divisor.
Case 2: $k>\sqrt{n}$

If $k>\sqrt{n}$, then multiplying both sides by c we get $c k>c \sqrt{n}$. But $c k=n$ so $n>c \sqrt{n}$. Finally, dividing both sides by \sqrt{n} gives $\sqrt{n}>c$, so c is the desired nontrivial factor.
In both cases we find a nontrivial divisor at most \sqrt{n}, as required.
Alternate solution (proof by contradiction): Let k be a nontrivial divisor of n. Since k is a divisor, $n=k c$ for some integer c. Observe that c is also nontrivial, since if c were 1 or n then k would have to be n or 1 .

Suppose, for contradiction, that $k>\sqrt{n}$ and $c>\sqrt{n}$. Then $k c>\sqrt{n} \sqrt{n}=n$. But by assumption we have $k c=n$, so this is a contradiction. It follows that either k or c is at most \sqrt{n} meaning that n has a nontrivial divisor at most \sqrt{n}.
(c) Informally explain why the fact about integers proved in (b) lets you change the code safely.

Solution:

The new code makes a subset of "checks" that the old code makes, thus the only concern would be that a non-prime number we found in the later checks would "slip through" without the extra checks. However, if a number has any nontrivial divisor, it will have one that is $\leq \sqrt{n}$, so even if we exit the loop early after \sqrt{n} instead of n checks, our method is still guaranteed to always work.

5. Modular Arithmetic

(a) Prove that if $a \mid b$ and $b \mid a$, where a and b are integers, then $a=b$ or $a=-b$.

Solution:

Suppose that $a \mid b$ and $b \mid a$, where a, b are integers. By the definition of divides, we have $a \neq 0, b \neq 0$ and $b=k a, a=j b$ for some integers k, j. Combining these equations, we see that $a=j(k a)$.

Then, dividing both sides by a, we get $1=j k$. So, $\frac{1}{j}=k$. Note that j and k are integers, which is only possible if $j, k \in\{1,-1\}$. It follows that $b=-a$ or $b=a$.
(b) Prove that if $n \mid m$, where n and m are integers greater than 1 , and if $a \equiv b(\bmod m)$, where a and b are integers, then $a \equiv b(\bmod n)$.

Solution:

Suppose $n \mid m$ with $n, m>1$, and $a \equiv b(\bmod m)$. By definition of divides, we have $m=k n$ for some $k \in \mathbb{Z}$. By definition of congruence, we have $m \mid a-b$, which means that $a-b=m j$ for some $j \in \mathbb{Z}$. Combining the two equations, we see that $a-b=(k n j)=n(k j)$. By definition of congruence, we have $a \equiv b(\bmod n)$, as required.

[^0]: ${ }^{1}$ these proofs aren't much longer than proofs you've seen so far, but it can be a little easier to get stuck - use these as a chance to practice how to get unstuck if you do!

