
Section 05: Number Theory

1. GCD

(a) Calculate gcd(100, 50).

(b) Calculate gcd(17, 31).

(c) Find the multiplicative inverse of 6 (mod 7).

(d) Does 49 have an multiplicative inverse (mod 7)?

2. Extended Euclidean Algorithm

(a) Find the multiplicative inverse y of 7 mod 33. That is, find y such that 7y ≡ 1 (mod 33). You should use the
extended Euclidean Algorithm. Your answer should be in the range 0 ≤ y < 33.

(b) Now, solve 7z ≡ 2(mod 33) for all of its integer solutions z.

3. Euclid’s Lemma1

(a) Show that if an integer p divides the product of two integers a and b, and gcd(p, a) = 1, then p divides b.

(b) Show that if a prime p divides ab where a and b are integers, then p | a or p | b. (Hint: Use part (a))

4. Prime Checking

You wrote the following code, isPrime(int n) which you are confident returns true if and only if n is prime (we
assume its input is always positive).

public boolean isPrime(int n) {

int potentialDiv = 2;

while (potentialDiv < n) {

if (n % potenttialDiv == 0)

return false;

1these proofs aren’t much longer than proofs you’ve seen so far, but it can be a little easier to get stuck – use these as a chance to practice
how to get unstuck if you do!

1

potentialDiv++;

}

return true;

}

Your friend suggests replacing potentialDiv < n with potentialDiv <= Math.sqrt(n). In this problem, you’ll
argue the change is ok. That is, your method still produces the correct result if n is a positive integer.

We will use “nontrivial divisor” to mean a factor that isn’t 1 or the number itself. Formally, a positive integer k
being a “nontrivial divisor” of n means that k|n, k 6= 1 and k 6= n. Claim: when a positive integer n has a nontrivial
divisor, it has a nontrivial divisor at most

√
n.

(a) Let’s try to break down the claim and understand it through examples. Show an example (a specific n and k)
of a nontrivial divisor, of a divisor that is not nontrivial, and of a number with only trivial divisors.

(b) Prove the claim. Hint: you may want to divide into two cases!

(c) Informally explain why the fact about integers proved in (b) lets you change the code safely.

5. Modular Arithmetic

(a) Prove that if a | b and b | a, where a and b are integers, then a = b or a = −b.

(b) Prove that if n | m, where n and m are integers greater than 1, and if a ≡ b (mod m), where a and b are
integers, then a ≡ b (mod n).

2

	1 GCD
	2 Extended Euclidean Algorithm
	3 Euclid's Lemmathese proofs aren't much longer than proofs you've seen so far, but it can be a little easier to get stuck – use these as a chance to practice how to get unstuck if you do!
	4 Prime Checking
	5 Modular Arithmetic

