Section 05: Number Theory

1. GCD

(a) Calculate $\operatorname{gcd}(100,50)$.
(b) Calculate $\operatorname{gcd}(17,31)$.
(c) Find the multiplicative inverse of $6(\bmod 7)$.
(d) Does 49 have an multiplicative inverse $(\bmod 7)$?

2. Extended Euclidean Algorithm

(a) Find the multiplicative inverse y of $7 \bmod 33$. That is, find y such that $7 y \equiv 1(\bmod 33)$. You should use the extended Euclidean Algorithm. Your answer should be in the range $0 \leq y<33$.
(b) Now, solve $7 z \equiv 2(\bmod 33)$ for all of its integer solutions z.

3. Euclid's Lemma ${ }^{1}$

(a) Show that if an integer p divides the product of two integers a and b, and $\operatorname{gcd}(p, a)=1$, then p divides b.
(b) Show that if a prime p divides $a b$ where a and b are integers, then $p \mid a$ or $p \mid b$. (Hint: Use part (a))

4. Prime Checking

You wrote the following code, isPrime(int n) which you are confident returns true if and only if n is prime (we assume its input is always positive).

```
public boolean isPrime(int n) {
    int potentialDiv = 2;
    while (potentialDiv < n) {
            if (n % potenttialDiv == 0)
                return false;
```

[^0]```
 potentialDiv++;
 }
 return true;
}
```

Your friend suggests replacing potentialDiv < $n$ with potentialDiv <= Math.sqrt(n). In this problem, you'll argue the change is ok. That is, your method still produces the correct result if $n$ is a positive integer.

We will use "nontrivial divisor" to mean a factor that isn't 1 or the number itself. Formally, a positive integer $k$ being a "nontrivial divisor" of $n$ means that $k \mid n, k \neq 1$ and $k \neq n$. Claim: when a positive integer $n$ has a nontrivial divisor, it has a nontrivial divisor at most $\sqrt{n}$.
(a) Let's try to break down the claim and understand it through examples. Show an example (a specific $n$ and $k$ ) of a nontrivial divisor, of a divisor that is not nontrivial, and of a number with only trivial divisors.
(b) Prove the claim. Hint: you may want to divide into two cases!
(c) Informally explain why the fact about integers proved in (b) lets you change the code safely.

## 5. Modular Arithmetic

(a) Prove that if $a \mid b$ and $b \mid a$, where $a$ and $b$ are integers, then $a=b$ or $a=-b$.
(b) Prove that if $n \mid m$, where $n$ and $m$ are integers greater than 1 , and if $a \equiv b(\bmod m)$, where $a$ and $b$ are integers, then $a \equiv b(\bmod n)$.


[^0]:    ${ }^{1}$ these proofs aren't much longer than proofs you've seen so far, but it can be a little easier to get stuck - use these as a chance to practice how to get unstuck if you do!

