
CSE 311 Section 6

Induction



Administrivia



Announcements & Reminders

● HW4 

○ Grades out now

○ If you think something was graded incorrectly, submit a regrade request!

● HW5 (BOTH PARTS)

○ BOTH PARTS due Wednesday 10/8 @ 10pm

● Midterm is Coming!!!

○ Wednesday 10/15 @ 6-7:30 pm in BAG 131 and 154

○ If you cannot make it, please let us know ASAP and we will schedule you for a makeup



Induction



(Weak) Induction Template

Let 𝑃(𝑛) be “(whatever you’re trying to prove)”. 

We show 𝑃(𝑛) holds for all 𝑛 by induction on 𝑛.

Base Case: Show 𝑃(𝑏) is true.

Inductive Hypothesis: Suppose 𝑃(𝑘) holds for an arbitrary 𝑘 ≥ 𝑏.

Inductive Step: Show 𝑃(𝑘 + 1) (i.e. get 𝑃(𝑘) → 𝑃(𝑘 + 1)) 

Conclusion: Therefore, 𝑃(𝑛) holds for all 𝑛 by the principle of induction.



(Weak) Induction Template

Let 𝑃(𝑛) be “(whatever you’re trying to prove)”. 

We show 𝑃(𝑛) holds for all 𝒏 by induction on 𝑛.

Base Case: Show 𝑃(𝑏) is true.

Inductive Hypothesis: Suppose 𝑃(𝑘) holds for an arbitrary 𝑘 ≥ 𝑏.

Inductive Step: Show 𝑃(𝑘 + 1) (i.e. get 𝑃(𝑘) → 𝑃(𝑘 + 1)) 

Conclusion: Therefore, 𝑃(𝑛) holds for all 𝒏 by the principle of induction.

Note: often you will 
condition 𝑛 here, like 
“all natural numbers 𝑛” 
or “𝑛 ≥ 0”

Match the earlier condition on 𝑛 in your conclusion!



Problem 1 – Induction with Equality

a) Show using induction that 0 + 1 + 2 + ⋯ + 𝑛 =
𝑛(𝑛+1)

2
 for all 𝑛 ∈ ℕ. 

b) Define the triangle numbers as △𝑛= 1 + 2 +··· +𝑛, where 𝑛 ∈ ℕ. In part (a) we 

showed △𝑛=
𝑛(𝑛+1)

2
. Prove the following equality for all 𝑛 ∈ ℕ :

03 + 13 + ⋯ + 𝑛3 =△𝑛
2

Lets walk through part (a) together.

We can “fill in” our induction template to construct our proof by induction.



Problem 1 – Induction with Equality
Show using induction that 

0 + 1 + 2 + ⋯ + 𝑛 =
𝑛(𝑛+1)

2
 

for all 𝑛 ∈ ℕ. 

Let 𝑃(𝑛) be “”. We show 𝑃(𝑛) holds for (some) 𝑛 by induction on 𝑛.

Base Case: 𝑃(𝑏): 

Inductive Hypothesis: Suppose 𝑃(𝑘) holds for an arbitrary 𝑘 ≥ 𝑏.

Inductive Step: Goal: Show 𝑃 𝑘 + 1 :

Conclusion: Therefore, 𝑃(𝑛) holds for (some) 𝑛 by the principle of induction.



Problem 1 – Induction with Equality
Show using induction that 

0 + 1 + 2 + ⋯ + 𝑛 =
𝑛(𝑛+1)

2
 

for all 𝑛 ∈ ℕ. 

Let 𝑃(𝑛) be “0 + 1 + 2 + ⋯ + 𝑛 =
𝑛(𝑛+1)

2
”. We show 𝑃(𝑛) holds for all 𝑛 ∈ ℕ by induction on 𝑛.

Base Case: 𝑃(𝑏): 

Inductive Hypothesis: Suppose 𝑃(𝑘) holds for an arbitrary 𝑘 ≥ 𝑏.

Inductive Step: Goal: Show 𝑃 𝑘 + 1 :

Conclusion: Therefore, 𝑃(𝑛) holds for all 𝑛 ∈ ℕ by the principle of induction.



Problem 1 – Induction with Equality
Show using induction that 

0 + 1 + 2 + ⋯ + 𝑛 =
𝑛(𝑛+1)

2
 

for all 𝑛 ∈ ℕ. 

Let 𝑃(𝑛) be “0 + 1 + 2 + ⋯ + 𝑛 =
𝑛(𝑛+1)

2
”. We show 𝑃(𝑛) holds for all 𝑛 ∈ ℕ by induction on 𝑛.

Base Case: 𝑃(0): 0 + ⋯ = 0 =
0(0+1)

2
 so the base case holds.

Inductive Hypothesis: Suppose 𝑃(𝑘) holds for an arbitrary 𝑘 ≥ 𝑏.

Inductive Step: Goal: Show 𝑃 𝑘 + 1 :

Conclusion: Therefore, 𝑃(𝑛) holds for all 𝑛 ∈ ℕ by the principle of induction.



Problem 1 – Induction with Equality
Show using induction that 

0 + 1 + 2 + ⋯ + 𝑛 =
𝑛(𝑛+1)

2
 

for all 𝑛 ∈ ℕ. 

Let 𝑃(𝑛) be “0 + 1 + 2 + ⋯ + 𝑛 =
𝑛(𝑛+1)

2
”. We show 𝑃(𝑛) holds for all 𝑛 ∈ ℕ by induction on 𝑛.

Base Case: 𝑃(0): 0 + ⋯ = 0 =
0(0+1)

2
 so the base case holds.

Inductive Hypothesis: Suppose 𝑃(𝑘) holds for an arbitrary 𝑘 ≥ 0, i.e. 0 + 1 + 2 + ⋯ + 𝑘 =
𝑘(𝑘+1)

2

Inductive Step: Goal: Show 𝑃 𝑘 + 1 :

Conclusion: Therefore, 𝑃(𝑛) holds for all 𝑛 ∈ ℕ by the principle of induction.



Problem 1 – Induction with Equality
Show using induction that 

0 + 1 + 2 + ⋯ + 𝑛 =
𝑛(𝑛+1)

2
 

for all 𝑛 ∈ ℕ. 

Let 𝑃(𝑛) be “0 + 1 + 2 + ⋯ + 𝑛 =
𝑛(𝑛+1)

2
”. We show 𝑃(𝑛) holds for all 𝑛 ∈ ℕ by induction on 𝑛.

Base Case: 𝑃(0): 0 + ⋯ = 0 =
0(0+1)

2
 so the base case holds.

Inductive Hypothesis: Suppose 𝑃(𝑘) holds for an arbitrary 𝑘 ≥ 0, i.e. 0 + 1 + 2 + ⋯ + 𝑘 =
𝑘(𝑘+1)

2
 

Inductive Step: Goal: Show 𝑃 𝑘 + 1 : 0 + 1 + ⋯ + 𝑘 + 𝑘 + 1 =
(𝑘+1)(𝑘+2)

2
 

Conclusion: Therefore, 𝑃(𝑛) holds for all 𝑛 ∈ ℕ by the principle of induction.



Problem 1 – Induction with Equality
Show using induction that 

0 + 1 + 2 + ⋯ + 𝑛 =
𝑛(𝑛+1)

2
 

for all 𝑛 ∈ ℕ. 

Let 𝑃(𝑛) be “0 + 1 + 2 + ⋯ + 𝑛 =
𝑛(𝑛+1)

2
”. We show 𝑃(𝑛) holds for all 𝑛 ∈ ℕ by induction on 𝑛.

Base Case: 𝑃(0): 0 + ⋯ = 0 =
0(0+1)

2
 so the base case holds.

Inductive Hypothesis: Suppose 𝑃(𝑘) holds for an arbitrary 𝑘 ≥ 0, i.e. 0 + 1 + 2 + ⋯ + 𝑘 =
𝑘(𝑘+1)

2
 

Inductive Step: Goal: Show 𝑃 𝑘 + 1 : 0 + 1 + ⋯ + 𝑘 + 𝑘 + 1 =
(𝑘+1)(𝑘+2)

2
 

0 + 1 + ⋯ + 𝑘 + 𝑘 + 1 = ⋯ 

        …

        =
(𝑘+1)(𝑘+2)

2
        ?

Conclusion: Therefore, 𝑃(𝑛) holds for all 𝑛 ∈ ℕ by the principle of induction.



Problem 1 – Induction with Equality
Show using induction that 

0 + 1 + 2 + ⋯ + 𝑛 =
𝑛(𝑛+1)

2
 

for all 𝑛 ∈ ℕ. 

Let 𝑃(𝑛) be “0 + 1 + 2 + ⋯ + 𝑛 =
𝑛(𝑛+1)

2
”. We show 𝑃(𝑛) holds for all 𝑛 ∈ ℕ by induction on 𝑛.

Base Case: 𝑃(0): 0 + ⋯ = 0 =
0(0+1)

2
 so the base case holds.

Inductive Hypothesis: Suppose 𝑃(𝑘) holds for an arbitrary 𝑘 ≥ 0, i.e. 0 + 1 + 2 + ⋯ + 𝑘 =
𝑘(𝑘+1)

2
 

Inductive Step: Goal: Show 𝑃 𝑘 + 1 : 0 + 1 + ⋯ + 𝑘 + 𝑘 + 1 =
(𝑘+1)(𝑘+2)

2
 

0 + 1 + ⋯ + 𝑘 + (𝑘 + 1) = (0 + 1 + ⋯ + 𝑘) + (𝑘 + 1) 

        …

        =
(𝑘+1)(𝑘+2)

2
        ?

Conclusion: Therefore, 𝑃(𝑛) holds for all 𝑛 ∈ ℕ by the principle of induction.



Problem 1 – Induction with Equality
Show using induction that 

0 + 1 + 2 + ⋯ + 𝑛 =
𝑛(𝑛+1)

2
 

for all 𝑛 ∈ ℕ. 

Let 𝑃(𝑛) be “0 + 1 + 2 + ⋯ + 𝑛 =
𝑛(𝑛+1)

2
”. We show 𝑃(𝑛) holds for all 𝑛 ∈ ℕ by induction on 𝑛.

Base Case: 𝑃(0): 0 + ⋯ = 0 =
0(0+1)

2
 so the base case holds.

Inductive Hypothesis: Suppose 𝑃(𝑘) holds for an arbitrary 𝑘 ≥ 0, i.e. 0 + 1 + 2 + ⋯ + 𝑘 =
𝑘(𝑘+1)

2
 

Inductive Step: Goal: Show 𝑃 𝑘 + 1 : 0 + 1 + ⋯ + 𝑘 + 𝑘 + 1 =
(𝑘+1)(𝑘+2)

2
 

0 + 1 + ⋯ + 𝑘 + (𝑘 + 1) = (0 + 1 + ⋯ + 𝑘) + (𝑘 + 1) 

        =
𝑘(𝑘+1)

2
+ (𝑘 + 1)      by I.H.

        …

        =
(𝑘+1)(𝑘+2)

2
        ?

Conclusion: Therefore, 𝑃(𝑛) holds for all 𝑛 ∈ ℕ by the principle of induction.



Problem 1 – Induction with Equality
Show using induction that 

0 + 1 + 2 + ⋯ + 𝑛 =
𝑛(𝑛+1)

2
 

for all 𝑛 ∈ ℕ. 

Let 𝑃(𝑛) be “0 + 1 + 2 + ⋯ + 𝑛 =
𝑛(𝑛+1)

2
”. We show 𝑃(𝑛) holds for all 𝑛 ∈ ℕ by induction on 𝑛.

Base Case: 𝑃(0): 0 + ⋯ = 0 =
0(0+1)

2
 so the base case holds.

Inductive Hypothesis: Suppose 𝑃(𝑘) holds for an arbitrary 𝑘 ≥ 0, i.e. 0 + 1 + 2 + ⋯ + 𝑘 =
𝑘(𝑘+1)

2
 

Inductive Step: Goal: Show 𝑃 𝑘 + 1 : 0 + 1 + ⋯ + 𝑘 + 𝑘 + 1 =
(𝑘+1)(𝑘+2)

2
 

0 + 1 + ⋯ + 𝑘 + (𝑘 + 1) = (0 + 1 + ⋯ + 𝑘) + (𝑘 + 1) 

        =
𝑘(𝑘+1)

2
+ (𝑘 + 1)      by I.H.

        =
𝑘(𝑘+1)

2
+

2(𝑘+1)

2

        …

        =
(𝑘+1)(𝑘+2)

2
        ?

Conclusion: Therefore, 𝑃(𝑛) holds for all 𝑛 ∈ ℕ by the principle of induction.



Problem 1 – Induction with Equality
Show using induction that 

0 + 1 + 2 + ⋯ + 𝑛 =
𝑛(𝑛+1)

2
 

for all 𝑛 ∈ ℕ. 

Let 𝑃(𝑛) be “0 + 1 + 2 + ⋯ + 𝑛 =
𝑛(𝑛+1)

2
”. We show 𝑃(𝑛) holds for all 𝑛 ∈ ℕ by induction on 𝑛.

Base Case: 𝑃(0): 0 + ⋯ = 0 =
0(0+1)

2
 so the base case holds.

Inductive Hypothesis: Suppose 𝑃(𝑘) holds for an arbitrary 𝑘 ≥ 0, i.e. 0 + 1 + 2 + ⋯ + 𝑘 =
𝑘 𝑘+1

2
 

Inductive Step: Goal: Show 𝑃 𝑘 + 1 : 0 + 1 + ⋯ + 𝑘 + 𝑘 + 1 =
(𝑘+1)(𝑘+2)

2
 

0 + 1 + ⋯ + 𝑘 + (𝑘 + 1) = (0 + 1 + ⋯ + 𝑘) + (𝑘 + 1) 

        =
𝑘(𝑘+1)

2
+ (𝑘 + 1)      by I.H.

        =
𝑘(𝑘+1)

2
+

2(𝑘+1)

2

        =
𝑘 𝑘+1 +2(𝑘+1)

2
 

        =
(𝑘+1)(𝑘+2)

2
        ?

Conclusion: Therefore, 𝑃(𝑛) holds for all 𝑛 ∈ ℕ by the principle of induction.



Problem 1 – Induction with Equality
Show using induction that 

0 + 1 + 2 + ⋯ + 𝑛 =
𝑛(𝑛+1)

2
 

for all 𝑛 ∈ ℕ. 

Let 𝑃(𝑛) be “0 + 1 + 2 + ⋯ + 𝑛 =
𝑛(𝑛+1)

2
”. We show 𝑃(𝑛) holds for all 𝑛 ∈ ℕ by induction on 𝑛.

Base Case: 𝑃(0): 0 + ⋯ = 0 =
0(0+1)

2
 so the base case holds.

Inductive Hypothesis: Suppose 𝑃(𝑘) holds for an arbitrary 𝑘 ≥ 0, i.e. 0 + 1 + 2 + ⋯ + 𝑘 =
𝑘(𝑘+1)

2
 

Inductive Step: Goal: Show 𝑃 𝑘 + 1 : 0 + 1 + ⋯ + 𝑘 + 𝑘 + 1 =
(𝑘+1)(𝑘+2)

2
 

0 + 1 + ⋯ + 𝑘 + (𝑘 + 1) = (0 + 1 + ⋯ + 𝑘) + (𝑘 + 1) 

        =
𝑘(𝑘+1)

2
+ (𝑘 + 1)      by I.H.

        =
𝑘(𝑘+1)

2
+

2(𝑘+1)

2

        =
𝑘 𝑘+1 +2(𝑘+1)

2
 

        =
(𝑘+1)(𝑘+2)

2
        factoring out (k+1)

Conclusion: Therefore, 𝑃(𝑛) holds for all 𝑛 ∈ ℕ by the principle of induction.



Problem 1 – Induction with Equality

a) Show using induction that 0 + 1 + 2 + ⋯ + 𝑛 =
𝑛(𝑛+1)

2
 for all 𝑛 ∈ ℕ. 

b) Define the triangle numbers as △𝑛= 1 + 2 +··· +𝑛, where 𝑛 ∈ ℕ. In part (a) we 

showed △𝑛=
𝑛(𝑛+1)

2
. Prove the following equality for all 𝑛 ∈ ℕ :

03 + 13 + ⋯ + 𝑛3 =△𝑛
2

Now try part (b) with people around you, and then we’ll go over it together!



Problem 1 – Induction with Equality

Let 𝑃(𝑛) be “”. We show 𝑃(𝑛) holds for (some) 𝑛 by induction on 𝑛.

Base Case: 𝑃(𝑏): 

Inductive Hypothesis: Suppose 𝑃(𝑘) holds for an arbitrary 𝑘 ≥ 𝑏.

Inductive Step: Goal: Show 𝑃 𝑘 + 1 :

Conclusion: Therefore, 𝑃(𝑛) holds for (some) 𝑛 by the principle of induction.

△𝑛= 1 + 2 +··· +𝑛,  𝑛 ∈ ℕ.

 △𝑛=
𝑛(𝑛+1)

2
.  Prove for all 𝑛 ∈ ℕ:

03 + 13 + ⋯ + 𝑛3 =△𝑛
2  



Strong Induction



Why Strong Induction?

In weak induction, the inductive hypothesis only assumes that 𝑃(𝑘) is true 

and uses that in the inductive step to prove the implication 𝑃 𝑘 → 𝑃(𝑘 + 1). 

In strong induction, the inductive hypothesis assumes the predicate holds 

for every step from the base case(s) up to 𝑃 𝑘 . This usually looks something 

like 𝑃 𝑏1 ∧ 𝑃 𝑏2 ∧ ⋯ ∧ 𝑃 𝑘 . Then it uses this stronger inductive hypothesis 

in the inductive step to prove the implication 𝑃(𝑏1) ∧ ⋯ ∧ 𝑃 𝑘 → 𝑃(𝑘 + 1).

Strong induction is necessary when we have multiple base cases, or when we 

need to go back to a smaller number than 𝑘 in our inductive step.



Strong Induction Template

Let 𝑃(𝑛) be “(whatever you’re trying to prove)”. 

We show 𝑃(𝑛) holds for all 𝑛 ≥ 𝑏𝑚𝑖𝑛 by induction on 𝑛.

Base Case: Show 𝑃 𝑏𝑚𝑖𝑛 , 𝑃 𝑏𝑚𝑖𝑛+1 , … , 𝑃(𝑏𝑚𝑎𝑥) are all true.

Inductive Hypothesis: Suppose 𝑃 𝑏𝑚𝑖𝑛 ∧ ⋯ ∧ 𝑃(𝑘) hold for an arbitrary 

𝑘 ≥ 𝑏𝑚𝑎𝑥.

Inductive Step: Show 𝑃(𝑘 + 1) (i.e. get 𝑃 𝑏𝑚𝑖𝑛 ∧ ⋯ ∧ 𝑃(𝑘) → 𝑃(𝑘 + 1)) 

Conclusion: Therefore, 𝑃(𝑛) holds for all 𝑛 ≥ 𝑏𝑚𝑖𝑛 by the principle of 

induction.



Problem 4 – Cantelli’s Rabbits
Xavier Cantelli owns some rabbits. The number of rabbits he has in any given year is described by 
the function 𝑓:

   𝑓(0) = 0 

   𝑓(1) = 1 

   𝑓(𝑛) = 2𝑓(𝑛 − 1) − 𝑓(𝑛 − 2) for 𝑛 ≥ 2

Determine, with proof, the number, 𝑓(𝑛), of rabbits that Cantelli owns in year 𝑛. That is, construct 
a formula for 𝑓(𝑛) and prove its correctness.

First, let’s construct a formula for 𝑓(𝑛). How many rabbits does he have each year? Let’s do 
some calculations, and see if we can find a pattern. Then, we’ll use induction to prove the 
pattern holds for all 𝑛!
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Problem 4 – Cantelli’s Rabbits
Xavier Cantelli owns some rabbits. The number of rabbits he has in any given year is described by the function 𝑓:

   𝑓(0) = 0 

   𝑓(1) = 1 

   𝑓(𝑛) = 2𝑓(𝑛 − 1) − 𝑓(𝑛 − 2) for 𝑛 ≥ 2

Determine, with proof, the number, 𝑓(𝑛), of rabbits that Cantelli owns in year 𝑛. That is, construct a formula for 
𝑓(𝑛) and prove its correctness.

It seems like we have a pattern here!
𝑓(𝑛) = 𝑛 
 But we don’t want to have to check for EVERY 𝑛, so let’s see if we can prove it with induction instead!

𝑓(0) = 0
𝑓(1) = 1 
𝑓(2) = 2𝑓(2 − 1) − 𝑓(2 − 2) = 2𝑓(1) − 𝑓(0) = 2(1) − 0 = 2 − 0 = 2 
𝑓(3) = 2𝑓(3 − 1) − 𝑓(3 − 2) = 2𝑓(2) − 𝑓(1) = 2(2) − 1 = 4 − 1 = 3 
𝑓(4) = 2𝑓(4 − 1) − 𝑓(4 − 2) = 2𝑓(3) − 𝑓(2) = 2(3) − 2 = 6 − 2 = 4 



Problem 4 – Cantelli’s Rabbits

What kind of induction should we use?
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Problem 4 – Cantelli’s Rabbits

What kind of induction should we use?

Strong induction!

Two big clues:

● Multiple base cases in the formula: 𝑓(0) = 0 and 𝑓(1) = 1

● Recursively defined step of formula goes back further than just 𝑛: 

○ 𝑓(𝑛) based on both 𝑓(𝑛 − 1) and 𝑓(𝑛 − 2)

○ for 𝑃(𝑛) to be true, both 𝑃(𝑛 − 1) and 𝑃(𝑛 − 2) must be true



Problem 4 – Cantelli’s Rabbits
Let 𝑃(𝑛) be “(whatever you’re trying to prove)”. 

We show 𝑃(𝑛) holds for all 𝑛 ≥ 𝑏𝑚𝑖𝑛 by induction on 𝑛.

Base Case: Show 𝑃 𝑏𝑚𝑖𝑛 , 𝑃 𝑏𝑚𝑖𝑛+1 , … , 𝑃(𝑏𝑚𝑎𝑥) are all true.

Inductive Hypothesis: Suppose 𝑃 𝑏𝑚𝑖𝑛 ∧ ⋯ ∧ 𝑃(𝑘) hold for an arbitrary 

𝑘 ≥ 𝑏𝑚𝑎𝑥.

Inductive Step: Show 𝑃(𝑘 + 1) (i.e. get 𝑃 𝑏𝑚𝑖𝑛 ∧ ⋯ ∧ 𝑃(𝑘) → 𝑃(𝑘 + 1)) 

Conclusion: Therefore, 𝑃(𝑛) holds for all 𝑛 ≥ 𝑏𝑚𝑖𝑛 by the principle of induction.

Fill in the strong induction template to prove the claim!



Problem 4 – Cantelli’s Rabbits

Let 𝑃(𝑛) be “”.  

We show 𝑃(𝑛) holds …

Base Cases: 

Inductive Hypothesis:

Inductive Step: 

Conclusion: Therefore, 𝑃(𝑛) holds for all … by the principle of induction.



That’s All, Folks!

Thanks for coming to section this week!
Any questions?
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