CSE 311 Section 6

Induction

Announcements \& Reminders

- HW4
- Grades out now
- If you think something was graded incorrectly, submit a regrade request!
- HW5 (BOTH PARTS)
- BOTH PARTS due Wednesday 10/8 @ 10pm
- Midterm is Coming!!!
- Wednesday 10/15 @ 6-7:30 pm in BAG 131 and 154
- If you cannot make it, please let us know ASAP and we will schedule you for a makeup

Induction

(Weak) Induction Template

Let $P(n)$ be "(whatever you're trying to prove)".
We show $P(n)$ holds for all n by induction on n.

Base Case: Show $P(b)$ is true.

Inductive Hypothesis: Suppose $P(k)$ holds for an arbitrary $k \geq b$.

Inductive Step: Show $P(k+1)$ (i.e. get $P(k) \rightarrow P(k+1))$

Conclusion: Therefore, $P(n)$ holds for all n by the principle of induction.

(Weak) Induction Template

Let $P(n)$ be "(whatever you're trying to prove)". We show $P(n)$ holds for all n by induction on n.

> Note: often you will condition n here, like "all natural numbers n " or " $n \geq 0$ "

Base Case: Show $P(b)$ is true.

Inductive Hypothesis: Suppose $P(k)$ holds for an arbitrary $k \geq b$.

Inductive Step: Show $P(k+1)$ (i.e. get $P(k) \rightarrow P(k+1))$

Conclusion: Therefore, $P(n)$ holds for all n by the principle of induction.

Problem 1 - Induction with Equality

a) Show using induction that $0+1+2+\cdots+n=\frac{n(n+1)}{2}$ for all $n \in \mathbb{N}$.
b) Define the triangle numbers as $\triangle_{n}=1+2+\cdots+n$, where $n \in \mathbb{N}$. In part (a) we showed $\triangle_{n}=\frac{n(n+1)}{2}$. Prove the following equality for all $n \in \mathbb{N}$:

$$
0^{3}+1^{3}+\cdots+n^{3}=\triangle_{n}^{2}
$$

Lets walk through part (a) together.

We can "fill in" our induction template to construct our proof by induction.

Show using induction that

Problem 1 - Induction with Equality
 $0+1+2+\cdots+n=\frac{n(n+1)}{2}$ for all $n \in \mathbb{N}$.

Let $P(n)$ be "". We show $P(n)$ holds for (some) n by induction on n. Base Case: $P(b)$:
Inductive Hypothesis: Suppose $P(k)$ holds for an arbitrary $k \geq b$. Inductive Step: Goal: Show $P(k+1)$:

Conclusion: Therefore, $P(n)$ holds for (some) n by the principle of induction.

> Show using induction that

Problem 1 - Induction with Equality
 $0+1+2+\cdots+n=\frac{n(n+1)}{2}$ for all $n \in \mathbb{N}$.

 Base Case: $P(b)$:
Inductive Hypothesis: Suppose $P(k)$ holds for an arbitrary $k \geq b$. Inductive Step: Goal: Show $P(k+1)$:

Conclusion: Therefore, $P(n)$ holds for all $n \in \mathbb{N}$ by the principle of induction.

Show using induction that

Problem 1 - Induction with Equality

$0+1+2+\cdots+n=\frac{n(n+1)}{2}$ for all $n \in \mathbb{N}$.

Base Case: $P(0): 0+\cdots=0=\frac{0(0+1)}{2}$ so the base case holds.
Inductive Hypothesis: Suppose $P(k)$ holds for an arbitrary $k \geq b$. Inductive Step: Goal: Show $P(k+1)$:

Conclusion: Therefore, $P(n)$ holds for all $n \in \mathbb{N}$ by the principle of induction.

> Show using induction that

Problem 1 - Induction with Equality
 $0+1+2+\cdots+n=\frac{n(n+1)}{2}$ for all $n \in \mathbb{N}$.

Base Case: $P(0): 0+\cdots=0=\frac{0(0+1)}{2}$ so the base case holds.
Inductive Hypothesis: Suppose $P(k)$ holds for an arbitrary $k \geq 0$, i.e. $0+1+2+\cdots+k=\frac{k(k+1)}{2}$
Inductive Step: Goal: Show $P(k+1)$:

Conclusion: Therefore, $P(n)$ holds for all $n \in \mathbb{N}$ by the principle of induction.

> Show using induction that

Problem 1 - Induction with Equality
 $0+1+2+\cdots+n=\frac{n(n+1)}{2}$ for all $n \in \mathbb{N}$.

Base Case: $P(0): 0+\cdots=0=\frac{0(0+1)}{2}$ so the base case holds.
Inductive Hypothesis: Suppose $P(k)$ holds for an arbitrary $k \geq 0$, i.e. $0+1+2+\cdots+k=\frac{k(k+1)}{2}$
Inductive Step: Goal: Show $P(k+1): 0+1+\cdots+k+(k+1)=\frac{(k+1)(k+2)}{2}$
Conclusion: Therefore, $P(n)$ holds for all $n \in \mathbb{N}$ by the principle of induction.

> Show using induction that

Problem 1 - Induction with Equality

$0+1+2+\cdots+n=\frac{n(n+1)}{2}$ for all $n \in \mathbb{N}$.

Base Case: $P(0): 0+\cdots=0=\frac{0(0+1)}{2}$ so the base case holds.
Inductive Hypothesis: Suppose $P(k)$ holds for an arbitrary $k \geq 0$, i.e. $0+1+2+\cdots+k=\frac{k(k+1)}{2}$
Inductive Step: Goal: Show $P(k+1): 0+1+\cdots+k+(k+1)=\frac{(k+1)(k+2)}{2}$ $0+1+\cdots+k+(k+1)=\cdots$

$$
=\frac{(k+1)(k+2)}{2}
$$

Conclusion: Therefore, $P(n)$ holds for all $n \in \mathbb{N}$ by the principle of induction.

> Show using induction that

Problem 1 - Induction with Equality

$0+1+2+\cdots+n=\frac{n(n+1)}{2}$ for all $n \in \mathbb{N}$.

Base Case: $P(0): 0+\cdots=0=\frac{0(0+1)}{2}$ so the base case holds.
Inductive Hypothesis: Suppose $P(k)$ holds for an arbitrary $k \geq 0$, i.e. $0+1+2+\cdots+k=\frac{k(k+1)}{2}$
Inductive Step: Goal: Show $P(k+1): 0+1+\cdots+k+(k+1)=\frac{(k+1)(k+2)}{2}$
$0+1+\cdots+k+(k+1)=(0+1+\cdots+k)+(k+1)$

$$
=\frac{(k+1)(k+2)}{2}
$$

Conclusion: Therefore, $P(n)$ holds for all $n \in \mathbb{N}$ by the principle of induction.

Show using induction that

Problem 1 - Induction with Equality

$0+1+2+\cdots+n=\frac{n(n+1)}{2}$ for all $n \in \mathbb{N}$.
 Base Case: $P(0): 0+\cdots=0=\frac{0(0+1)}{2}$ so the base case holds.
Inductive Hypothesis: Suppose $P(k)$ holds for an arbitrary $k \geq 0$, i.e. $0+1+2+\cdots+k=\frac{k(k+1)}{2}$
Inductive Step: Goal: Show $P(k+1): 0+1+\cdots+k+(k+1)=\frac{(k+1)(k+2)}{2}$
$0+1+\cdots+k+(k+1)=(0+1+\cdots+k)+(k+1)$

$$
\begin{array}{ll}
=\frac{k(k+1)}{2}+(k+1) & \text { by I.H. } \\
\cdots & \\
=\frac{(k+1)(k+2)}{2} & ?
\end{array}
$$

Conclusion: Therefore, $P(n)$ holds for all $n \in \mathbb{N}$ by the principle of induction.

Show using induction that

Problem 1 - Induction with Equality

$0+1+2+\cdots+n=\frac{n(n+1)}{2}$ for all $n \in \mathbb{N}$.
 Base Case: $P(0): 0+\cdots=0=\frac{0(0+1)}{2}$ so the base case holds.
Inductive Hypothesis: Suppose $P(k)$ holds for an arbitrary $k \geq 0$, i.e. $0+1+2+\cdots+k=\frac{k(k+1)}{2}$
Inductive Step: Goal: Show $P(k+1): 0+1+\cdots+k+(k+1)=\frac{(k+1)(k+2)}{2}$
$0+1+\cdots+k+(k+1)=(0+1+\cdots+k)+(k+1)$

$$
\begin{array}{ll}
=\frac{k(k+1)}{2}+(k+1) & \text { by I.H. } \\
=\frac{k(k+1)}{2}+\frac{2(k+1)}{2} & ?
\end{array}
$$

Conclusion: Therefore, $P(n)$ holds for all $n \in \mathbb{N}$ by the principle of induction.

> Show using induction that

Problem 1 - Induction with Equality

$0+1+2+\cdots+n=\frac{n(n+1)}{2}$ for all $n \in \mathbb{N}$.
Let $P(n)$ be " $0+1+2+\cdots+n=\frac{n(n+1)}{2}$ ". We show $P(n)$ holds for all $n \in \mathbb{N}$ by induction on n. Base Case: $P(0): 0+\cdots=0=\frac{0(0+1)}{2}$ so the base case holds.
Inductive Hypothesis: Suppose $P(k)$ holds for an arbitrary $k \geq 0$, i.e. $0+1+2+\cdots+k=\frac{k(k+1)}{2}$
Inductive Step: Goal: Show $P(k+1): 0+1+\cdots+k+(k+1)=\frac{(k+1)(k+2)}{2}$

$$
\begin{aligned}
0+1+\cdots+k+(k+1) & =(0+1+\cdots+k)+(k+1) \\
& =\frac{k(k+1)}{2}+(k+1) \\
& =\frac{k(k+1)}{2}+\frac{2(k+1)}{2} \\
& =\frac{k(k+1)+2(k+1)}{2} \\
& =\frac{(k+1)(k+2)}{2}
\end{aligned}
$$

Conclusion: Therefore, $P(n)$ holds for all $n \in \mathbb{N}$ by the principle of induction.

> Show using induction that

Problem 1 - Induction with Equality

$0+1+2+\cdots+n=\frac{n(n+1)}{2}$ for all $n \in \mathbb{N}$.
Let $P(n)$ be " $0+1+2+\cdots+n=\frac{n(n+1)}{2}$ ". We show $P(n)$ holds for all $n \in \mathbb{N}$ by induction on n. Base Case: $P(0): 0+\cdots=0=\frac{0(0+1)}{2}$ so the base case holds.
Inductive Hypothesis: Suppose $P(k)$ holds for an arbitrary $k \geq 0$, i.e. $0+1+2+\cdots+k=\frac{k(k+1)}{2}$ Inductive Step: Goal: Show $P(k+1): 0+1+\cdots+k+(k+1)=\frac{(k+1)(k+2)}{2}$

$$
\begin{aligned}
0+1+\cdots+k+(k+1) & =(0+1+\cdots+k)+(k+1) & & \\
& =\frac{k(k+1)}{2}+(k+1) & & \text { by I.H. } \\
& =\frac{k(k+1)}{2}+\frac{2(k+1)}{2} & & \\
& =\frac{k(k+1)+2(k+1)}{2} & & \text { factoring out }(\mathrm{k}+1)
\end{aligned}
$$

Conclusion: Therefore, $P(n)$ holds for all $n \in \mathbb{N}$ by the principle of induction.

Problem 1 - Induction with Equality

a) Show using induction that $0+1+2+\cdots+n=\frac{n(n+1)}{2}$ for all $n \in \mathbb{N}$.
b) Define the triangle numbers as $\triangle_{n}=1+2+\cdots+n$, where $n \in \mathbb{N}$. In part (a) we showed $\triangle_{n}=\frac{n(n+1)}{2}$. Prove the following equality for all $n \in \mathbb{N}$:

$$
0^{3}+1^{3}+\cdots+n^{3}=\triangle_{n}^{2}
$$

$$
\Delta_{n}=1+2+\cdots+n, n \in \mathbb{N} .
$$

Problem 1 - Induction with Equality

$\triangle_{n}=\frac{n(n+1)}{2}$. Prove for all $n \in \mathbb{N}$: $0^{3}+1^{3}+\cdots+n^{3}=\triangle_{n}^{2}$

Let $P(n)$ be "". We show $P(n)$ holds for (some) n by induction on n. Base Case: $P(b)$:
Inductive Hypothesis: Suppose $P(k)$ holds for an arbitrary $k \geq b$. Inductive Step: Goal: Show $P(k+1)$:

Conclusion: Therefore, $P(n)$ holds for (some) n by the principle of induction.

$$
\Delta_{n}=1+2+\cdots+n, n \in \mathbb{N} .
$$

Problem 1 - Induction with Equality

$\triangle_{n}=\frac{n(n+1)}{2}$. Prove for all $n \in \mathbb{N}$: $0^{3}+1^{3}+\cdots+n^{3}=\triangle_{n}^{2}$
Let $P(n)$ be " $0^{3}+1^{3}+\cdots+n^{3}=(0+1+\cdots+n)^{2}$ ". We show $P(n)$ holds for all $n \in \mathbb{N}$ by induction on n.
Base Case: $P(b)$:
Inductive Hypothesis: Suppose $P(k)$ holds for an arbitrary $k \geq b$. Inductive Step: Goal: Show $P(k+1)$:

Conclusion: Therefore, $P(n)$ holds for all $n \in \mathbb{N}$ by the principle of induction.

$$
\Delta_{n}=1+2+\cdots+n, n \in \mathbb{N} .
$$

Problem 1 - Induction with Equality

$\triangle_{n}=\frac{n(n+1)}{2}$. Prove for all $n \in \mathbb{N}$: $0^{3}+1^{3}+\cdots+n^{3}=\triangle_{n}^{2}$
Let $P(n)$ be " $0^{3}+1^{3}+\cdots+n^{3}=(0+1+\cdots+n)^{2}$ ". We show $P(n)$ holds for all $n \in \mathbb{N}$ by induction on n.
Base Case: $P(0): 0^{3}=0=(0)^{2}$ so the base case holds. Inductive Hypothesis: Suppose $P(k)$ holds for an arbitrary $k \geq b$. Inductive Step: Goal: Show $P(k+1)$:

Conclusion: Therefore, $P(n)$ holds for all $n \in \mathbb{N}$ by the principle of induction.

$$
\Delta_{n}=1+2+\cdots+n, n \in \mathbb{N} .
$$

Problem 1 - Induction with Equality

$\triangle_{n}=\frac{n(n+1)}{2}$. Prove for all $n \in \mathbb{N}$: $0^{3}+1^{3}+\cdots+n^{3}=\triangle_{n}^{2}$
Let $P(n)$ be " $0^{3}+1^{3}+\cdots+n^{3}=(0+1+\cdots+n)^{2}$ ". We show $P(n)$ holds for all $n \in \mathbb{N}$ by induction on n.
Base Case: $P(0): 0^{3}=0=(0)^{2}$ so the base case holds. Inductive Hypothesis: Suppose $P(k)$ holds for an arbitrary $k \geq 0$. i.e. $0^{3}+1^{3}+\cdots+k^{3}+=(0+1+\cdots+k)^{2}$ Inductive Step: Goal: Show $P(k+1)$:

Conclusion: Therefore, $P(n)$ holds for all $n \in \mathbb{N}$ by the principle of induction.

$$
\triangle_{n}=1+2+\cdots+n, n \in \mathbb{N}
$$

Problem 1 - Induction with Equality

$$
\begin{aligned}
& \triangle_{n}=\frac{n(n+1)}{2} \text {. Prove for all } n \in \mathbb{N} \text { : } \\
& 0^{3}+1^{3}+\cdots+n^{3}=\triangle_{n}^{2}
\end{aligned}
$$

Let $P(n)$ be " $0^{3}+1^{3}+\cdots+n^{3}=(0+1+\cdots+n)^{2}$ ". We show $P(n)$ holds for all $n \in \mathbb{N}$ by induction on n.
Base Case: $P(0): 0^{3}=0=(0)^{2}$ so the base case holds. Inductive Hypothesis: Suppose $P(k)$ holds for an arbitrary $k \geq 0$. i.e. $0^{3}+1^{3}+\cdots+k^{3}+=(0+1+\cdots+k)^{2}$ Inductive Step: Goal: Show $P(k+1): 0^{3}+1^{3}+\cdots+k^{3}+(k+1)^{3}=(0+1+\cdots+k+(k+1))^{2}$

Conclusion: Therefore, $P(n)$ holds for all $n \in \mathbb{N}$ by the principle of induction.

$$
\Delta_{n}=1+2+\cdots+n, n \in \mathbb{N}
$$

Problem 1 - Induction with Equality

$$
\begin{aligned}
& \Delta_{n}=\frac{n(n+1)}{2} \text {. Prove for all } n \in \mathbb{N} \text { : } \\
& 0^{3}+1^{3}+\cdots+n^{3}=\Delta_{n}^{2}
\end{aligned}
$$

Let $P(n)$ be " $0^{3}+1^{3}+\cdots+n^{3}=(0+1+\cdots+n)^{2}$ ". We show $P(n)$ holds for all $n \in \mathbb{N}$ by induction on n.
Base Case: $P(0): 0^{3}=0=(0)^{2}$ so the base case holds. Inductive Hypothesis: Suppose $P(k)$ holds for an arbitrary $k \geq 0$. i.e. $0^{3}+1^{3}+\cdots+k^{3}+=(0+1+\cdots+k)^{2}$ Inductive Step: Goal: Show $P(k+1): 0^{3}+1^{3}+\cdots+k^{3}+(k+1)^{3}=(0+1+\cdots+k+(k+1))^{2}$ $0^{3}+1^{3}+\cdots+k^{3}+(k+1)^{3}=\cdots$

$$
=(0+1+\cdots+k+(k+1))^{2}
$$

Conclusion: Therefore, $P(n)$ holds for all $n \in \mathbb{N}$ by the principle of induction.

$$
\Delta_{n}=1+2+\cdots+n, n \in \mathbb{N}
$$

Problem 1 - Induction with Equality

$\triangle_{n}=\frac{n(n+1)}{2}$. Prove for all $n \in \mathbb{N}$: $0^{3}+1^{3}+\cdots+n^{3}=\triangle_{n}^{2}$
Let $P(n)$ be " $0^{3}+1^{3}+\cdots+n^{3}=(0+1+\cdots+n)^{2}$ ". We show $P(n)$ holds for all $n \in \mathbb{N}$ by induction on n.
Base Case: $P(0): 0^{3}=0=(0)^{2}$ so the base case holds.
Inductive Hypothesis: Suppose $P(k)$ holds for an arbitrary $k \geq 0$. i.e. $0^{3}+1^{3}+\cdots+k^{3}+=(0+1+\cdots+k)^{2}$ Inductive Step: Goal: Show $P(k+1): 0^{3}+1^{3}+\cdots+k^{3}+(k+1)^{3}=(0+1+\cdots+k+(k+1))^{2}$

$$
\begin{array}{rlrl}
0^{3}+1^{3}+\cdots+k^{3}+(k+ & 1)^{3}=(0+1+\cdots+k)^{2}+(k+1)^{3} & & \text { by I.H. } \\
& =\left(\frac{k(k+1)}{2}\right)^{2}+(k+1)^{3} & & \text { by }(\mathrm{a}) \\
& =(k+1)^{2}\left(\frac{k^{2}}{2^{2}}+(k+1)\right) & & \text { factor out }(k+1)^{2} \\
& =(k+1)^{2}\left(\frac{k^{2}+4 k+4}{4}\right) & & \\
& =(k+1)^{2}\left(\frac{(k+2)^{2}}{4}\right) & & \text { factor numerator } \\
& =\left(\frac{(k+1)(k+2)}{2}\right)^{2} & & \text { by (a) } \\
& =(0+1+\cdots+k+(k+1))^{2} &
\end{array}
$$

Conclusion: Therefore, $P(n)$ holds for all $n \in \mathbb{N}$ by the principle of induction.

Strong Induction

Why Strong Induction?

In weak induction, the inductive hypothesis only assumes that $P(k)$ is true and uses that in the inductive step to prove the implication $P(k) \rightarrow P(k+1)$.

In strong induction, the inductive hypothesis assumes the predicate holds for every step from the base case(s) up to $P(k)$. This usually looks something like $P\left(b_{1}\right) \wedge P\left(b_{2}\right) \wedge \cdots \wedge P(k)$. Then it uses this stronger inductive hypothesis in the inductive step to prove the implication $P\left(b_{1}\right) \wedge \cdots \wedge P(k) \rightarrow P(k+1)$.

Strong induction is necessary when we have multiple base cases, or when we need to go back to a smaller number than k in our inductive step.

Strong Induction Template

Let $P(n)$ be "(whatever you're trying to prove)".
We show $P(n)$ holds for all $n \geq b_{\text {min }}$ by induction on n.
Base Case: Show $P\left(b_{\min }\right), P\left(b_{\min +1}\right), \ldots, P\left(b_{\max }\right)$ are all true.

Inductive Hypothesis: Suppose $P\left(b_{\min }\right) \wedge \cdots \wedge P(k)$ hold for an arbitrary $k \geq b_{\text {max }}$.

Inductive Step: Show $P(k+1)$ (i.e. get $P\left(b_{\min }\right) \wedge \cdots \wedge P(k) \rightarrow P(k+1)$)

Conclusion: Therefore, $P(n)$ holds for all $n \geq b_{\min }$ by the principle of induction.

Problem 4 - Cantelli's Rabbits

Xavier Cantelli owns some rabbits. The number of rabbits he has in any given year is described by the function f :

$$
\begin{aligned}
& f(0)=0 \\
& f(1)=1 \\
& f(n)=2 f(n-1)-f(n-2) \text { for } n \geq 2
\end{aligned}
$$

Determine, with proof, the number, $f(n)$, of rabbits that Cantelli owns in year n. That is, construct a formula for $f(n)$ and prove its correctness.

First, let's construct a formula for $f(n)$. How many rabbits does he have each year? Let's do some calculations, and see if we can find a pattern. Then, we'll use induction to prove the pattern holds for all n !

Problem 4 - Cantelli's Rabbits

Xavier Cantelli owns some rabbits. The number of rabbits he has in any given year is described by the function f :

$$
\begin{aligned}
& f(0)=0 \\
& f(1)=1 \\
& f(n)=2 f(n-1)-f(n-2) \text { for } n \geq 2
\end{aligned}
$$

Determine, with proof, the number, $f(n)$, of rabbits that Cantelli owns in year n. That is, construct a formula for $f(n)$ and prove its correctness.

Problem 4 - Cantelli's Rabbits

Xavier Cantelli owns some rabbits. The number of rabbits he has in any given year is described by the function f :

$$
\begin{aligned}
& f(0)=0 \\
& f(1)=1 \\
& f(n)=2 f(n-1)-f(n-2) \text { for } n \geq 2
\end{aligned}
$$

Determine, with proof, the number, $f(n)$, of rabbits that Cantelli owns in year n. That is, construct a formula for $f(n)$ and prove its correctness.

$$
\begin{aligned}
& f(0)=0 \\
& f(1)=1
\end{aligned}
$$

Problem 4 - Cantelli's Rabbits

Xavier Cantelli owns some rabbits. The number of rabbits he has in any given year is described by the function f :

$$
\begin{aligned}
& f(0)=0 \\
& f(1)=1 \\
& f(n)=2 f(n-1)-f(n-2) \text { for } n \geq 2
\end{aligned}
$$

Determine, with proof, the number, $f(n)$, of rabbits that Cantelli owns in year n. That is, construct a formula for $f(n)$ and prove its correctness.

$$
\begin{aligned}
& f(0)=0 \\
& f(1)=1 \\
& f(2)=2 f(2-1)-f(2-2)=2 f(1)-f(0)=2(1)-0=2-0=2
\end{aligned}
$$

Problem 4 - Cantelli's Rabbits

Xavier Cantelli owns some rabbits. The number of rabbits he has in any given year is described by the function f :

$$
\begin{aligned}
& f(0)=0 \\
& f(1)=1 \\
& f(n)=2 f(n-1)-f(n-2) \text { for } n \geq 2
\end{aligned}
$$

Determine, with proof, the number, $f(n)$, of rabbits that Cantelli owns in year n. That is, construct a formula for $f(n)$ and prove its correctness.

$$
\begin{aligned}
& f(0)=0 \\
& f(1)=1 \\
& f(2)=2 f(2-1)-f(2-2)=2 f(1)-f(0)=2(1)-0=2-0=2 \\
& f(3)=2 f(3-1)-f(3-2)=2 f(2)-f(1)=2(2)-1=4-1=3
\end{aligned}
$$

Problem 4 - Cantelli's Rabbits

Xavier Cantelli owns some rabbits. The number of rabbits he has in any given year is described by the function f :

$$
\begin{aligned}
& f(0)=0 \\
& f(1)=1 \\
& f(n)=2 f(n-1)-f(n-2) \text { for } n \geq 2
\end{aligned}
$$

Determine, with proof, the number, $f(n)$, of rabbits that Cantelli owns in year n. That is, construct a formula for $f(n)$ and prove its correctness.

$$
\begin{aligned}
& f(0)=0 \\
& f(1)=1 \\
& f(2)=2 f(2-1)-f(2-2)=2 f(1)-f(0)=2(1)-0=2-0=2 \\
& f(3)=2 f(3-1)-f(3-2)=2 f(2)-f(1)=2(2)-1=4-1=3 \\
& f(4)=2 f(4-1)-f(4-2)=2 f(3)-f(2)=2(3)-2=6-2=4
\end{aligned}
$$

Problem 4 - Cantelli's Rabbits

Xavier Cantelli owns some rabbits. The number of rabbits he has in any given year is described by the function f :

$$
\begin{aligned}
& f(0)=0 \\
& f(1)=1 \\
& f(n)=2 f(n-1)-f(n-2) \text { for } n \geq 2
\end{aligned}
$$

Determine, with proof, the number, $f(n)$, of rabbits that Cantelli owns in year n. That is, construct a formula for $f(n)$ and prove its correctness.

$$
\begin{aligned}
& f(0)=0 \\
& f(1)=1 \\
& f(2)=2 f(2-1)-f(2-2)=2 f(1)-f(0)=2(1)-0=2-0=2 \\
& f(3)=2 f(3-1)-f(3-2)=2 f(2)-f(1)=2(2)-1=4-1=3 \\
& f(4)=2 f(4-1)-f(4-2)=2 f(3)-f(2)=2(3)-2=6-2=4
\end{aligned}
$$

It seems like we have a pattern here!

$$
f(n)=n
$$

But we don't want to have to check for EVERY n, so let's see if we can prove it with induction instead!

Problem 4 - Cantelli's Rabbits

What kind of induction should we use?

Problem 4 - Cantelli's Rabbits

What kind of induction should we use?

Strong induction!

Problem 4 - Cantelli's Rabbits

What kind of induction should we use?

Strong induction!

Two big clues:

- Multiple base cases in the formula: $f(0)=0$ and $f(1)=1$
- Recursively defined step of formula goes back further than just n :
- $f(n)$ based on both $f(n-1)$ and $f(n-2)$
- for $P(n)$ to be true, both $P(n-1)$ and $P(n-2)$ must be true

Problem 4 - Cantelli's Rabbits

Let $P(n)$ be "(whatever you're trying to prove)". We show $P(n)$ holds for all $n \geq b_{\min }$ by induction on n.

Base Case: Show $P\left(b_{\min }\right), P\left(b_{\min +1}\right), \ldots, P\left(b_{\max }\right)$ are all true.

Inductive Hypothesis: Suppose $P\left(b_{\min }\right) \wedge \cdots \wedge P(k)$ hold for an arbitrary $k \geq b_{\text {max }}$.

Inductive Step: Show $P(k+1)$ (i.e. get $\left.P\left(b_{\min }\right) \wedge \cdots \wedge P(k) \rightarrow P(k+1)\right)$

Conclusion: Therefore, $P(n)$ holds for all $n \geq b_{\min }$ by the principle of induction.
Fill in the strong induction template to prove the claim!

Problem 4 - Cantelli's Rabbits

Let $P(n)$ be "".
We show $P(n)$ holds ...
Base Cases:
Inductive Hypothesis:

Inductive Step:

Conclusion: Therefore, $P(n)$ holds for all ... by the principle of induction.

Problem 4 - Cantelli's Rabbits

Let $P(n)$ be " $f(n)=n$ ".
We show $P(n)$ holds for all $n \geq 0$ by induction on n.
Base Cases:
Inductive Hypothesis:

Inductive Step:

Conclusion: Therefore, $P(n)$ holds for all $n \geq 0$ by the principle of induction.

Problem 4 - Cantelli's Rabbits

Let $P(n)$ be " $f(n)=n$ ".
We show $P(n)$ holds for all $n \geq 0$ by induction on n.
Base Cases: $(n=0, n=1): f(0)=0$ and $f(1)=1$ by definition of f.
Inductive Hypothesis:

Inductive Step:

Conclusion: Therefore, $P(n)$ holds for all $n \geq 0$ by the principle of induction.

Problem 4 - Cantelli's Rabbits

Let $P(n)$ be " $f(n)=n$ ".
We show $P(n)$ holds for all $n \geq 0$ by induction on n.
Base Cases: $(n=0, n=1): f(0)=0$ and $f(1)=1$ by definition of f.
Inductive Hypothesis: Suppose $P(0) \wedge P(1) \wedge \cdots \wedge P(k)$ hold for an arbitrary all $k \geq 1$.

Inductive Step:

Conclusion: Therefore, $P(n)$ holds for all $n \geq 0$ by the principle of induction.

Problem 4 - Cantelli's Rabbits

Let $P(n)$ be " $f(n)=n$ ".
We show $P(n)$ holds for all $n \geq 0$ by induction on n.
Base Cases: $(n=0, n=1): f(0)=0$ and $f(1)=1$ by definition of f.
Inductive Hypothesis: Suppose $P(0) \wedge P(1) \wedge \cdots \wedge P(k)$ hold for an arbitrary all $k \geq 1$.
i.e. $f(k)=k, f(k-1)=k-1, f(k-2)=k-2$, etc.

Inductive Step:

Conclusion: Therefore, $P(n)$ holds for all $n \geq 0$ by the principle of induction.

Problem 4 - Cantelli's Rabbits

Let $P(n)$ be " $f(n)=n$ ".
We show $P(n)$ holds for all $n \geq 0$ by induction on n.
Base Cases: $(n=0, n=1): f(0)=0$ and $f(1)=1$ by definition of f.
Inductive Hypothesis: Suppose $P(0) \wedge P(1) \wedge \cdots \wedge P(k)$ hold for an arbitrary all $k \geq 1$.
i.e. $f(k)=k, f(k-1)=k-1, f(k-2)=k-2$, etc.

Inductive Step: Goal: Show $P(k+1): f(k+1)=k+1$

Conclusion: Therefore, $P(n)$ holds for all $n \geq 0$ by the principle of induction.

Problem 4 - Cantelli's Rabbits

Let $P(n)$ be " $f(n)=n$ ".
We show $P(n)$ holds for all $n \geq 0$ by induction on n.
Base Cases: $(n=0, n=1): f(0)=0$ and $f(1)=1$ by definition of f.
Inductive Hypothesis: Suppose $P(0) \wedge P(1) \wedge \cdots \wedge P(k)$ hold for an arbitrary all $k \geq 1$.
i.e. $f(k)=k, f(k-1)=k-1, f(k-2)=k-2$, etc.

Inductive Step: Goal: Show $P(k+1): f(k+1)=k+1$
$f(k+1)=\ldots$

$$
=k+1
$$

Conclusion: Therefore, $P(n)$ holds for all $n \geq 0$ by the principle of induction.

Problem 4 - Cantelli's Rabbits

Let $P(n)$ be " $f(n)=n$ ".
We show $P(n)$ holds for all $n \geq 0$ by induction on n.
Base Cases: $(n=0, n=1): f(0)=0$ and $f(1)=1$ by definition of f.
Inductive Hypothesis: Suppose $P(0) \wedge P(1) \wedge \cdots \wedge P(k)$ hold for an arbitrary all $k \geq 1$.
i.e. $f(k)=k, f(k-1)=k-1, f(k-2)=k-2$, etc.

Inductive Step: Goal: Show $P(k+1): f(k+1)=k+1$

$$
\begin{aligned}
f(k+1) & =2 f(k)-f(k-1) \quad \text { definition of } f \\
& \ldots \\
& =k+1
\end{aligned}
$$

Conclusion: Therefore, $P(n)$ holds for all $n \geq 0$ by the principle of induction.

Problem 4 - Cantelli's Rabbits

Let $P(n)$ be " $f(n)=n$ ".
We show $P(n)$ holds for all $n \geq 0$ by induction on n.
Base Cases: $(n=0, n=1): f(0)=0$ and $f(1)=1$ by definition of f.
Inductive Hypothesis: Suppose $P(0) \wedge P(1) \wedge \cdots \wedge P(k)$ hold for an arbitrary all $k \geq 1$.
i.e. $f(k)=k, f(k-1)=k-1, f(k-2)=k-2$, etc.

Inductive Step: Goal: Show $P(k+1): f(k+1)=k+1$

$$
\begin{aligned}
f(k+1) & =2 f(k)-f(k-1) & & \text { definition of } f \\
& =2(k)-(k-1) & & \text { by I.H. } \\
& =k+1 & &
\end{aligned}
$$

Conclusion: Therefore, $P(n)$ holds for all $n \geq 0$ by the principle of induction.

That's All, Folks!

Thanks for coming to section this week! Any questions?

