Section 08: Induction, Regular Expressions, CFGs

1. Regular Expressions

(a) Write a regular expression that matches base 10 numbers (e.g., there should be no leading zeroes).
(b) Write a regular expression that matches all base-3 numbers that are divisible by 3 .
(c) Write a regular expression that matches all binary strings that contain the substring " 111 ", but not the substring " 000 ".
(d) Write a regular expression that matches all binary strings that do not have any consecutive 0's or 1's.
(e) Write a regular expression that matches all binary strings of the form $1^{k} y$, where $k \geq 1$ and $y \in\{0,1\}^{*}$ has at least k 1's.

2. CFGs

Write a context-free grammar to match each of these languages.
(a) All binary strings that end in 00 .
(b) All binary strings that contain at least three 1's.
(c) All binary strings with an equal number of 1's and 0's.
(d) All binary strings of the form $x y$, where $|x|=|y|$, but $x \neq y$.

3. Recursively Defined Sets of Strings

For each of the following, write a recursive definition of the sets satisfying the following properties. Briefly justify that your solution is correct.
(a) Binary strings of even length.
(b) Binary strings not containing 10 .
(c) Binary strings not containing 10 as a substring and having at least as many 1 s as 0 s .
(d) Binary strings containing at most two 0 s and at most two 1 s .

4. Structural Induction

(a) Consider the following recursive definition of strings.

Basis Step: " " is a string
Recursive Step: If X is a string and c is a character then append (c, X) is a string.
Recall the following recursive definition of the function len:

$$
\begin{array}{ll}
\text { len("") } & =0 \\
\text { len }(\operatorname{append}(c, X)) & =1+\operatorname{len}(X)
\end{array}
$$

Now, consider the following recursive definition:

$$
\begin{array}{ll}
\text { double("") } & =" " \\
\text { double(append }(c, X)) & =\operatorname{append}(c, \operatorname{append}(c, \text { double }(X))) .
\end{array}
$$

Prove that for any string X, len $($ double $(X))=2 \operatorname{len}(X)$.
(b) Consider the following definition of a (binary) Tree:

Basis Step: • is a Tree.
Recursive Step: If L is a Tree and R is a Tree then $\operatorname{Tree}(\bullet, L, R)$ is a Tree.
The function leaves returns the number of leaves of a Tree. It is defined as follows:

$$
\begin{array}{ll}
\text { leaves }(\bullet) & =1 \\
\text { leaves }(\operatorname{Tree}(\bullet, L, R)) & =\text { leaves }(L)+\text { leaves }(R)
\end{array}
$$

Also, recall the definition of size on trees:

$$
\begin{array}{ll}
\operatorname{size}(\bullet) & =1 \\
\operatorname{size}(\operatorname{Tree}(\bullet, L, R)) & =1+\operatorname{size}(L)+\operatorname{size}(R)
\end{array}
$$

Prove that leaves $(T) \geq \operatorname{size}(T) / 2+1 / 2$ for all Trees T.
(c) Prove the previous claim using strong induction. Define $P(n)$ as "all trees T of size n satisfy leaves $(T) \geq$ $\operatorname{size}(T) / 2+1 / 2$ ". You may use the following facts:

- For any tree T we have $\operatorname{size}(T) \geq 1$.
- For any tree $T, \operatorname{size}(T)=1$ if and only if $T=\bullet$.

If we wanted to prove these claims, we could do so by structural induction.
Note, in the inductive step you should start by letting T be an arbitrary tree of size $k+1$.

5. Reversing a Binary Tree

Consider the following definition of a (binary) Tree.
Basis Step Nil is a Tree.
Recursive Step If L is a Tree, R is a Tree, and x is an integer, then Tree (x, L, R) is a Tree.
The sum function returns the sum of all elements in a Tree.

$$
\begin{array}{ll}
\operatorname{sum}(\operatorname{Nil}) & =0 \\
\operatorname{sum}(\operatorname{Tree}(x, L, R)) & =x+\operatorname{sum}(L)+\operatorname{sum}(R)
\end{array}
$$

The following recursively defined function produces the mirror image of a Tree.

$$
\begin{array}{ll}
\text { reverse }(\operatorname{Nil}) & =\operatorname{Nil} \\
\operatorname{reverse}(\operatorname{Tree}(x, L, R)) & =\operatorname{Tree}(x, \operatorname{reverse}(R), \text { reverse }(L))
\end{array}
$$

Show that, for all Trees T that

$$
\operatorname{sum}(T)=\operatorname{sum}(\operatorname{reverse}(T))
$$

6. Walk the Dawgs

Suppose a dog walker takes care of $n \geq 12$ dogs. The dog walker is not a strong person, and will walk dogs in groups of 3 or 7 at a time (every dog gets walked exactly once). Prove the dog walker can always split the n dogs into groups of 3 or 7 .

7. For All

For this problem, we'll see an incorrect use of induction. For this problem, we'll think of all of the following as binary trees:

- A single node.
- A root node, with a left child that is the root of a binary tree (and no right child)
- A root node, with a right child that is the root of a binary tree (and no left child)
- A root node, with both left and right children that are roots of binary trees.

Let $P(n)$ be "for all trees of height n, the tree has an odd number of nodes"
Take a moment to realize this claim is false.
Now let's see an incorrect proof:
We'll prove $P(n)$ for all $n \in \mathbb{N}$ by induction on n.
Base Case $(n=0)$: There is only one tree of height 0 , a single node. It has one node, and $1=2 \cdot 0+1$, which is an odd number of nodes.

Inductive Hypothesis: Suppose $P(i)$ holds for $i=0, \ldots, k$, for some arbitrary $k \geq 0$.
Inductive Step: Let T be an arbitrary tree of height k. All trees with nodes (and since $k \geq 0, T$ has at least one node) have a leaf node. Add a left child and right child to a leaf (pick arbitrarily if there's more than one), This tree now has height $k+1$ (since T was height k and we added children below). By IH, T had an odd number of nodes, call it $2 j+1$ for some integer j. Now we have added two more, so our new tree has $2 j+1+2=2(j+1)+1$ nodes. Since j was an integer, so is $j+1$, and our new tree has an odd number of nodes, as required, so $P(k+1)$ holds.

By the principle of induction, $P(n)$ holds for all $n \in \mathbb{N}$. Since every tree has an (integer) height of 0 or more, every tree is included in some $P()$, so the claim holds for all trees.
(a) What is the bug in the proof?
(b) What should the starting point and target of the IS be (you can't write a full proof, as the claim is false).

8. Induction with Inequality

Prove that $6 n+6<2^{n}$ for all $n \geq 6$.

9. Induction with Formulas

These problems are a little more difficult and abstract. Try making sure you can do all the other problems before trying these ones.
(a) (i) Show that given two sets A and B that $\overline{A \cup B}=\bar{A} \cap \bar{B}$. (Don't use induction.)
(ii) Show using induction that for an integer $n \geq 2$, given n sets $A_{1}, A_{2}, \ldots, A_{n-1}, A_{n}$ that

$$
\overline{A_{1} \cup A_{2} \cup \cdots \cup A_{n-1} \cup A_{n}}=\overline{A_{1}} \cap \overline{A_{2}} \cap \cdots \cap \overline{A_{n-1}} \cap \overline{A_{n}}
$$

(b) (i) Show that given any integers a, b, and c, if $c \mid a$ and $c \mid b$, then $c \mid(a+b)$. (Don't use induction.)
(ii) Show using induction that for any integer $n \geq 2$, given n numbers $a_{1}, a_{2}, \ldots, a_{n-1}, a_{n}$, for any integer c such that $c \mid a_{i}$ for $i=1,2, \ldots, n$, that

$$
c \mid\left(a_{1}+a_{2}+\cdots+a_{n-1}+a_{n}\right) .
$$

In other words, if a number divides each term in a sum then that number divides the sum.

