
CSE 311 Section 09

Models of Computation

Administrivia

Announcements & Reminders

● HW6 Regrade Requests

○ Submit a regrade request if something was graded incorrectly

● HW7

○ Due Tomorrow Friday 12/1 @10pm

○ Late due date 12/4 @ 10pm

● HW8

○ Due Friday 12/8 @ 10pm

○ Late due date 12/11 @ 10pm

● Final Exam

○ Monday 12/11 @ 4:30pm-6:20 @ KNE 130

○ Fill out Form for Conflict Exam

Recursively Defined Sets

Recursive Definition of Sets
Define a set 𝑆 as follows:

Basis Step:
Describe the basic starting elements in your set
ex: 0 ∈ 𝑆

Recursive Step:
Describe how to derive new elements of the set from previous elements
ex: If 𝑥 ∈ 𝑆 then 𝑥 + 2 ∈ 𝑆.

Exclusion Rule: Every element of 𝑆 is in 𝑆 from the basis step (alone) or a
finite number of recursive steps starting from a basis step.

Regular Expressions

Regular Expressions
Basis:
● 𝜀 : The empty string itself matches the pattern (and nothing else does).

● ∅ : No strings match this pattern

● 𝑎 for any 𝑎 ∈ Σ : The character itself matching this pattern

Recursive:
● If 𝐴, 𝐵 are regular expressions then (𝐴∪𝐵) is a regular expression

○ matched by any string that matches 𝐴 or that matches 𝐵 [or both]

● If 𝐴, 𝐵 are regular expressions then 𝐴𝐵 is a regular expression

○ matched by any string 𝑥 such that 𝑥 = 𝑦𝑧, 𝑦 matches 𝐴 and 𝑧 matches 𝐵

● If 𝐴 is a regular expression, then 𝐴* is a regular expression

○ matched by any string that can be divided into 0 or more strings that match 𝐴

Regular Expressions
A regular expression is a recursively defined set of strings that form a
language.

A regular expression will generate all strings in a language, and won’t generate
any strings that ARE NOT in the language

Hints:

● Come up with a few examples of strings that ARE and ARE NOT in your

language

● Then, after you write your regex, check to make sure that it CAN generate

all of your examples that are in the language, and it CAN’T generate those

that are not

Problem 1 – Regular Expressions
a) Write a regular expression that matches base 10 numbers (e.g., there should be no

leading zeroes).

b) Write a regular expression that matches all base-3 numbers that are divisible by 3.

c) Write a regular expression that matches all binary strings that contain the
substring “111”, but not the substring “000”.

d) Write a regular expression that matches all binary strings that do not have any
consecutive 0’s or 1’s.

e) Write a regular expression that matches all binary strings of the form 1𝑘𝑦, where
𝑘 ≥ 1 and 𝑦 ∈ {0,1}∗ has at least 𝑘 1’s.

Work on this problem with the people around you.

Problem 1 – Regular Expressions
a) Write a regular expression that matches base 10 numbers (e.g., there should be no

leading zeroes).

Problem 1 – Regular Expressions
a) Write a regular expression that matches base 10 numbers (e.g., there should be no

leading zeroes).

0 ∪ ((1 ∪ 2 ∪ 3 ∪ 4 ∪ 5 ∪ 6 ∪ 7 ∪ 8 ∪ 9)(0 ∪ 1 ∪ 2 ∪ 3 ∪ 4 ∪ 5 ∪ 6 ∪ 7 ∪ 8 ∪ 9)∗)

Problem 1 – Regular Expressions
b) Write a regular expression that matches all base-3 numbers that are divisible by 3.

Problem 1 – Regular Expressions
b) Write a regular expression that matches all base-3 numbers that are divisible by 3.

0 ∪ ((1 ∪ 2)(0 ∪ 1 ∪ 2)∗ 0)

Problem 1 – Regular Expressions
c) Write a regular expression that matches all binary strings that contain the

substring “111”, but not the substring “000”.

Problem 1 – Regular Expressions
c) Write a regular expression that matches all binary strings that contain the

substring “111”, but not the substring “000”.

(01 ∪ 001 ∪ 1∗)∗ (0 ∪ 00 ∪ ε)111(01 ∪ 001 ∪ 1∗)∗ (0 ∪ 00 ∪ ε)

Problem 1 – Regular Expressions
d) Write a regular expression that matches all binary strings that do not have any

consecutive 0’s or 1’s.

Problem 1 – Regular Expressions
d) Write a regular expression that matches all binary strings that do not have any

consecutive 0’s or 1’s.

((01)∗ (0 ∪ ε)) ∪ ((10)∗ (1 ∪ ε))

Problem 1 – Regular Expressions
e) Write a regular expression that matches all binary strings of the form 1𝑘𝑦, where

𝑘 ≥ 1 and 𝑦 ∈ {0,1}∗ has at least 𝑘 1’s.

Problem 1 – Regular Expressions
e) Write a regular expression that matches all binary strings of the form 1𝑘𝑦, where

𝑘 ≥ 1 and 𝑦 ∈ {0,1}∗ has at least 𝑘 1’s.

1(0 ∪ 1)∗ 1(0 ∪ 1)∗

Explanation: While it may seem like we need to keep track of how many 1’s there
are, it turns out that we don’t. Convince yourself that strings in the language are
exactly those of the form 1x, where x is any binary string with at least one 1. Hence,
x is matched by the regular expression (0 ∪ 1)∗1(0 ∪ 1)∗

Context-Free Grammars

Context-Free Grammars

A context free grammar (CFG) is a finite set of production rules
over:

● An alphabet Σ of “terminal symbols”

● A finite set 𝑉 of “nonterminal symbols”

● A start symbol (one of the elements of 𝑉) usually denoted 𝑆

A production rule for a nonterminal 𝐴 ∈ 𝑉 takes the form

● 𝐴 → 𝑤1 | 𝑤2 | … |𝑤𝑘

Where each 𝑤𝑖 ∈ 𝑉∪ Σ* is a string of nonterminals and terminals.

Problem 2 – CFGs
Write a context-free grammar to match each of these languages.

a) All binary strings that start with 11.

b) All binary strings that contain at most one 1.

c) All strings over 0, 1, 2 with the same number of 1s and 0s and exactly one 2.

Work on this problem with the people around you.

Problem 2 – CFGs
a) All binary strings that start with 11.

Problem 2 – CFGs
a) All binary strings that start with 11.

S → 11T
T → 1T | 0T | ε

Problem 2 – CFGs
b) All binary strings that contain at most one 1.

Problem 2 – CFGs
b) All binary strings that contain at most one 1.

S → ABA
A → 0A | ε
B → 1 | ε

Problem 2 – CFGs
c) All strings over 0, 1, 2 with the same number of 1s and 0s and exactly one 2.

Problem 2 – CFGs
c) All strings over 0, 1, 2 with the same number of 1s and 0s and exactly one 2.

S → 01S | 10S | 0S1 | 1S0 | S01 | S10 | 2

Or:

S → 2T | T2 | ST | TS | 0S1 | 1S0
T → TT | 0T1 | 1T0 | ε

Deterministic Finite Automata

Deterministic Finite Automata
● A DFA is a finite-state machine that accepts or rejects a given string of symbols, by running

through a state sequence uniquely determined by the string.

● In other words:

○ Our machine is going to get a string as input. It will read one character at a time and

update “its state.”

○ At every step, the machine thinks of itself as in one of the (finite number) vertices. When

it reads the character, it follows the arrow labeled with that character to its next state.

○ Start at the “start state” (unlabeled, incoming arrow).

○ After you’ve read the last character, accept the string if and only if you’re in a “final

state” (double circle).

● Every machine is defined with respect to an alphabet Σ

● Every state has exactly one outgoing edge for every character in Σ

● There is exactly one start state; can have as many accept states (aka final states) as you want

– including none.

Problem 3 – DFAs, Stage 1
Construct DFAs to recognize each of the following languages.
Let Σ = {0, 1, 2, 3}.

a) All binary strings.

b) All strings whose digits sum to an even number.

c) All strings whose digits sum to an odd number.

Work on this problem with the people around you.

Problem 3 – DFAs, Stage 1
Let Σ = {0, 1, 2, 3}.
a) All binary strings.

Problem 3 – DFAs, Stage 1
Let Σ = {0, 1, 2, 3}.
a) All binary strings.

q0start q1

0,1 0,1,2,3

2,3

q0 : binary strings
q1 : strings that contain a character which is not 0 or 1

Problem 3 – DFAs, Stage 1
Let Σ = {0, 1, 2, 3}.
b) All strings whose digits sum to an even number.

Problem 3 – DFAs, Stage 1
Let Σ = {0, 1, 2, 3}.
b) All strings whose digits sum to an even number.

q0: strings whose sum of digits is even
q1: strings whose sum of digits is odd

q0start q1

0,2 0,2

1,3

Problem 3 – DFAs, Stage 1
Let Σ = {0, 1, 2, 3}.
c) All strings whose digits sum to an odd number.

Problem 3 – DFAs, Stage 1
Let Σ = {0, 1, 2, 3}.
c) All strings whose digits sum to an odd number.

q0: strings whose sum of digits is even
q1: strings whose sum of digits is odd

q0start q1

0,2 0,2

1,3

1,3

Nondeterministic Finite Automata

Nondeterministic Finite Automata
● Similar to DFAs, but with less restrictions.

○ From a given state, we’ll allow any number of outgoing edges labeled with a given

character. (In a DFA, we have only 1 outgoing edge labeled with each character).

○ The machine can follow any of them.

○ We’ll have edges labeled with “𝜀” – the machine (optionally) can follow one of

those without reading another character from the input.

○ If we “get stuck” i.e. the next character is 𝑎 and there’s no transition leaving our

state labeled 𝑎, the computation dies.

● An NFA still has exactly one start state and any number of final states.

● The NFA accepts 𝑥 if there is some path from a start state to a final state labeled with 𝑥.

● From a state, you can have 0,1, or many outgoing arrows labeled with a single

character. You can choose any of them to build the required path.

Problem 5 – NFAs
a) What language does the following NFA accept?

b) Create an NFA for the language “all binary strings that have a 1 as one of the last
three digits”.

Work on this problem with the people around you.

q0start

q3 0

0

q1 q2

2

0ε

ε 1

Problem 5 – NFAs
a) What language does the following NFA accept?

q0start

q3 0

0

q1 q2

2

0ε

ε 1

Problem 5 – NFAs
a) What language does the following NFA accept?

q0start

q3 0

0

q1 q2

2

0ε

ε 1

All strings of only 0’s and 1’s, not containing more than one 1.

Problem 5 – NFAs
b) Create an NFA for the language “all binary strings that have a 1 as one of the last

three digits”.

Problem 5 – NFAs
b) Create an NFA for the language “all binary strings that have a 1 as one of the last

three digits”.

q0start

0,1

1
q1 q2 q3

0,1 0,1

That’s All, Folks!

Thanks for coming to section this week!
Any questions?

	Intro
	Slide 1: CSE 311 Section 09

	Administrivia
	Slide 2: Administrivia
	Slide 3: Announcements & Reminders

	Recursively Defined Sets
	Slide 4: Recursively Defined Sets
	Slide 5: Recursive Definition of Sets

	Regular Expressions
	Slide 6: Regular Expressions
	Slide 7: Regular Expressions
	Slide 8: Regular Expressions

	1
	Slide 9: Problem 1 – Regular Expressions
	Slide 10: Problem 1 – Regular Expressions
	Slide 11: Problem 1 – Regular Expressions
	Slide 12: Problem 1 – Regular Expressions
	Slide 13: Problem 1 – Regular Expressions
	Slide 14: Problem 1 – Regular Expressions
	Slide 15: Problem 1 – Regular Expressions
	Slide 16: Problem 1 – Regular Expressions
	Slide 17: Problem 1 – Regular Expressions
	Slide 18: Problem 1 – Regular Expressions
	Slide 19: Problem 1 – Regular Expressions

	CFGs
	Slide 20: Context-Free Grammars
	Slide 21: Context-Free Grammars

	2
	Slide 22: Problem 2 – CFGs
	Slide 23: Problem 2 – CFGs
	Slide 24: Problem 2 – CFGs
	Slide 25: Problem 2 – CFGs
	Slide 26: Problem 2 – CFGs
	Slide 27: Problem 2 – CFGs
	Slide 28: Problem 2 – CFGs

	DFAs
	Slide 29: Deterministic Finite Automata
	Slide 30: Deterministic Finite Automata

	3
	Slide 31: Problem 3 – DFAs, Stage 1
	Slide 32: Problem 3 – DFAs, Stage 1
	Slide 33: Problem 3 – DFAs, Stage 1
	Slide 34: Problem 3 – DFAs, Stage 1
	Slide 35: Problem 3 – DFAs, Stage 1
	Slide 36: Problem 3 – DFAs, Stage 1
	Slide 37: Problem 3 – DFAs, Stage 1

	NFAs
	Slide 38: Nondeterministic Finite Automata
	Slide 39: Nondeterministic Finite Automata

	4
	Slide 40: Problem 5 – NFAs
	Slide 41: Problem 5 – NFAs
	Slide 42: Problem 5 – NFAs
	Slide 43: Problem 5 – NFAs
	Slide 44: Problem 5 – NFAs

	Outro
	Slide 45: That’s All, Folks!

