
CSE 311 Section MR

Midterm Review



Administrivia



Announcements & Reminders

● HW5 (BOTH PARTS)

○ BOTH PARTS were due Wednesday 11/8 @ 10pm

○ Late due date Friday 11/10

● Midterm is Coming Next Week!!!

○ Wednesday 10/15 @ 6-7:30 pm in BAG 131 and 154

○ If you cannot make it, please let us know ASAP and we will schedule you for a makeup



Problem 1: Translation



Problem 1 – Translation

Let your domain of discourse be all coffee drinks. You should use the following 
predicates: 

Work on this problem with the people around you.

• soy(𝑥) is true iff 𝑥 contains soy milk. 
• whole(𝑥) is true iff 𝑥 contains whole milk. 
• sugar(𝑥) is true iff 𝑥 contains sugar 

Translate each of the following statements into predicate logic. You may use 
quantifiers, the predicates above, and usual math connectors like = and ≠. 

a) Coffee drinks with whole milk are not vegan

b) Robbie only likes one coffee drink, and that drink is not vegan

c) There is a drink that has both sugar and soy milk.

• decaf(𝑥) is true iff 𝑥 is not caffeinated. 
• vegan(𝑥) is true iff 𝑥 is vegan. 
• RobbieLikes(𝑥) is true iff Robbie likes the drink 𝑥. 



a) Coffee drinks with whole milk are not vegan

b) Robbie only likes one coffee drink, and that drink is not vegan

c) There is a drink that has both sugar and soy milk.
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• sugar(𝑥) is true iff 𝑥 contains sugar 
• decaf(𝑥) is true iff 𝑥 is not caffeinate
• vegan(𝑥) is true iff 𝑥 is vegan
• RobbieLikes(𝑥) is true iff Robbie likes the drink 𝑥 
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∀𝑥(whole(𝑥) → ¬vegan(𝑥)) 
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c) There is a drink that has both sugar and soy milk.
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∃𝑥∀𝑦(RobbieLikes(𝑥)  ∧  ¬ Vegan(𝑥)  ∧  [RobbieLikes(𝑦)  →  𝑥 =  𝑦]) 



a) Coffee drinks with whole milk are not vegan

b) Robbie only likes one coffee drink, and that drink is not vegan

c) There is a drink that has both sugar and soy milk.

Problem 1 – Translation
• soy(𝑥) is true iff 𝑥 contains soy milk
• whole(𝑥) is true iff 𝑥 contains whole milk
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a) Coffee drinks with whole milk are not vegan

b) Robbie only likes one coffee drink, and that drink is not vegan

c) There is a drink that has both sugar and soy milk.

Problem 1 – Translation
• soy(𝑥) is true iff 𝑥 contains soy milk
• whole(𝑥) is true iff 𝑥 contains whole milk
• sugar(𝑥) is true iff 𝑥 contains sugar 
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• vegan(𝑥) is true iff 𝑥 is vegan
• RobbieLikes(𝑥) is true iff Robbie likes the drink 𝑥 

∀𝑥(whole(𝑥) → ¬vegan(𝑥)) 

∃𝑥 sugar 𝑥 ∧ soy 𝑥  

∃𝑥∀𝑦(RobbieLikes(𝑥)  ∧  ¬ Vegan(𝑥)  ∧  [RobbieLikes(𝑦)  →  𝑥 =  𝑦]) 
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Problem 1 – Translation

Let your domain of discourse be all coffee drinks. You should use the following 
predicates: 

Work on this problem with the people around you.

• soy(𝑥) is true iff 𝑥 contains soy milk. 
• whole(𝑥) is true iff 𝑥 contains whole milk. 
• sugar(𝑥) is true iff 𝑥 contains sugar 

Translate the following symbolic logic statement into a (natural) English sentence. 
Take advantage of domain restriction.

∀𝑥([decaf(𝑥) ∧ RobbieLikes(𝑥)] → sugar(𝑥)) 

• decaf(𝑥) is true iff 𝑥 is not caffeinated. 
• vegan(𝑥) is true iff 𝑥 is vegan. 
• RobbieLikes(𝑥) is true iff Robbie likes the drink 𝑥. 



∀𝑥([decaf(𝑥) ∧ RobbieLikes(𝑥)] → sugar(𝑥)) 

Problem 1 – Translation
• soy(𝑥) is true iff 𝑥 contains soy milk
• whole(𝑥) is true iff 𝑥 contains whole milk
• sugar(𝑥) is true iff 𝑥 contains sugar 
• decaf(𝑥) is true iff 𝑥 is not caffeinate
• vegan(𝑥) is true iff 𝑥 is vegan
• RobbieLikes(𝑥) is true iff Robbie likes the drink 𝑥 



∀𝑥([decaf(𝑥) ∧ RobbieLikes(𝑥)] → sugar(𝑥)) 

Problem 1 – Translation
• soy(𝑥) is true iff 𝑥 contains soy milk
• whole(𝑥) is true iff 𝑥 contains whole milk
• sugar(𝑥) is true iff 𝑥 contains sugar 
• decaf(𝑥) is true iff 𝑥 is not caffeinate
• vegan(𝑥) is true iff 𝑥 is vegan
• RobbieLikes(𝑥) is true iff Robbie likes the drink 𝑥 

Every decaf drink that Robbie likes has sugar.



∀𝑥([decaf(𝑥) ∧ RobbieLikes(𝑥)] → sugar(𝑥)) 

Problem 1 – Translation
• soy(𝑥) is true iff 𝑥 contains soy milk
• whole(𝑥) is true iff 𝑥 contains whole milk
• sugar(𝑥) is true iff 𝑥 contains sugar 
• decaf(𝑥) is true iff 𝑥 is not caffeinate
• vegan(𝑥) is true iff 𝑥 is vegan
• RobbieLikes(𝑥) is true iff Robbie likes the drink 𝑥 

Every decaf drink that Robbie likes has sugar.

Statements like “For every decaf drink, if Robbie likes it then it has sugar” are 
equivalent, but only partially take advantage of domain restriction.
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Suppose that 𝐴 ⊆ 𝐵. Prove that 𝒫(𝐴) ⊆ 𝒫(𝐵).
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Then, write the proof.
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Suppose that 𝐴 ⊆ 𝐵. Prove that 𝒫(𝐴) ⊆ 𝒫(𝐵).

First, translate the claim into predicate logic.

Then, write the proof.

Work on this problem with the people around you.

∀𝑋 𝐴 ⊆ 𝐵 ∧ 𝑋 ∈ 𝒫 𝐴 → 𝑋 ∈ 𝒫 𝐵  
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Suppose 𝐴 ⊆ 𝐵. Let the set 𝑋 be an arbitrary element of 𝒫(𝐴), so 𝑋 ∈ 𝒫(𝐴). 

…

Since 𝑋 was arbitrary in 𝒫(𝐴), we have shown 𝒫(𝐴) ⊆ 𝒫(𝐵).
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Problem 3 – Number Theory

Let 𝑝 be a prime number at least 3 and let 𝑥 be an integer such that 𝑥2%𝑝 = 1.

a) Show that if an integer 𝑦 satisfies 𝑦 ≡ 1 (mod 𝑝), then 𝑦2 ≡ 1 (mod 𝑝). 

b) Repeat part (a), but don’t use any theorems from the Number Theory Reference 
Sheet. That is, show the claim directly from the definitions. 

c) From part (a), we can see that 𝑥%𝑝 can equal 1. Show that for any integer 𝑥, if 
𝑥2 ≡ 1 (mod 𝑝), then 𝑥 ≡ 1 (mod 𝑝) or 𝑥 ≡ −1 (mod 𝑝). That is, show that the 
only value 𝑥%𝑝 can take other than 1 is 𝑝 − 1. 
Hint: Suppose you have an 𝑥 such that 𝑥2 ≡ 1 (mod 𝑝) and use the fact that 
𝑥2 − 1 = 𝑥 −  1 𝑥 +  1  
Hint: You may the following theorem without proof: if 𝑝 is prime and 𝑝 | (𝑎𝑏) then 
𝑝 | 𝑎 or 𝑝 | 𝑏.

Work on this problem with the people around you.



Problem 3 – Number Theory

a) Show that if an integer 𝑦 satisfies 𝑦 ≡ 1 (mod 𝑝), then 𝑦2 ≡ 1 (mod 𝑝). 

Let 𝑝 be a prime number at least 3 and 
let 𝑥 be an integer such that 𝑥2%𝑝 = 1



Problem 3 – Number Theory

a) Show that if an integer 𝑦 satisfies 𝑦 ≡ 1 (mod 𝑝), then 𝑦2 ≡ 1 (mod 𝑝). 

Let 𝑝 be a prime number at least 3 and 
let 𝑥 be an integer such that 𝑥2%𝑝 = 1

Claim in predicate logic: ∀𝑦[ 𝑦 ≡ 1 mod 𝑝 → 𝑦2 ≡ 1 mod 𝑝 ]  



Problem 3 – Number Theory

a) Show that if an integer 𝑦 satisfies 𝑦 ≡ 1 (mod 𝑝), then 𝑦2 ≡ 1 (mod 𝑝). 

Let 𝑝 be a prime number at least 3 and 
let 𝑥 be an integer such that 𝑥2%𝑝 = 1

Claim in predicate logic: ∀𝑦[ 𝑦 ≡ 1 mod 𝑝 → 𝑦2 ≡ 1 mod 𝑝 ]  

Let 𝑦 be an arbitrary integer and suppose 𝑦 ≡ 1 (mod 𝑝). 
… 

𝑦2 ≡ 1 (mod 𝑝). 
Since y is arbitrary, the claim holds.



Problem 3 – Number Theory

a) Show that if an integer 𝑦 satisfies 𝑦 ≡ 1 (mod 𝑝), then 𝑦2 ≡ 1 (mod 𝑝). 

Let 𝑝 be a prime number at least 3 and 
let 𝑥 be an integer such that 𝑥2%𝑝 = 1

Claim in predicate logic: ∀𝑦[ 𝑦 ≡ 1 mod 𝑝 → 𝑦2 ≡ 1 mod 𝑝 ]  

Let 𝑦 be an arbitrary integer and suppose 𝑦 ≡ 1 (mod 𝑝). We can multiply 
congruences, so multiplying this congruence by itself we get 𝑦2 ≡ 12 mod 𝑝 .
… 𝑦2 ≡ 1(mod 𝑝) 
Since y is arbitrary, the claim holds.



Problem 3 – Number Theory

a) Show that if an integer 𝑦 satisfies 𝑦 ≡ 1 (mod 𝑝), then 𝑦2 ≡ 1 (mod 𝑝). 

Let 𝑝 be a prime number at least 3 and 
let 𝑥 be an integer such that 𝑥2%𝑝 = 1

Claim in predicate logic: ∀𝑦[ 𝑦 ≡ 1 mod 𝑝 → 𝑦2 ≡ 1 mod 𝑝 ]  

Let 𝑦 be an arbitrary integer and suppose 𝑦 ≡ 1 (mod 𝑝). We can multiply 
congruences, so multiplying this congruence by itself we get 𝑦2 ≡ 12 mod 𝑝 .
Simplifying, we have 𝑦2 ≡ 1(mod 𝑝) 
Since y is arbitrary, the claim holds.



Problem 3 – Number Theory

b) Repeat part (a), but don’t use any theorems from the Number Theory Reference 
Sheet. That is, show the claim directly from the definitions. 

Let 𝑝 be a prime number at least 3 and 
let 𝑥 be an integer such that 𝑥2%𝑝 = 1



Problem 3 – Number Theory
b) Repeat part (a), but don’t use any theorems from the Number Theory Reference Sheet. That is, 

show the claim directly from the definitions. 

Let 𝑝 be a prime number at least 3 and 
let 𝑥 be an integer such that 𝑥2%𝑝 = 1

Let 𝑥 be an arbitrary integer and suppose 𝑥 ≡ 1 (mod 𝑝). 

…

𝑥2 ≡ 1 mod 𝑝 . 
Since 𝑥 was arbitrary, the claim holds.



Problem 3 – Number Theory
b) Repeat part (a), but don’t use any theorems from the Number Theory Reference Sheet. That is, 

show the claim directly from the definitions. 

Let 𝑝 be a prime number at least 3 and 
let 𝑥 be an integer such that 𝑥2%𝑝 = 1

Let 𝑥 be an arbitrary integer and suppose 𝑥 ≡ 1 (mod 𝑝). 

By the definition of Congruences, 𝑝 | (𝑥 − 1). Therefore, by the definition of divides, there 
exists an integer 𝑘 such that 𝑝𝑘 = (𝑥 − 1).
…

𝑥2 ≡ 1 mod 𝑝 . 
Since 𝑥 was arbitrary, the claim holds.



Problem 3 – Number Theory
b) Repeat part (a), but don’t use any theorems from the Number Theory Reference Sheet. That is, 

show the claim directly from the definitions. 

Let 𝑝 be a prime number at least 3 and 
let 𝑥 be an integer such that 𝑥2%𝑝 = 1

Let 𝑥 be an arbitrary integer and suppose 𝑥 ≡ 1 (mod 𝑝). 

By the definition of Congruences, 𝑝 | (𝑥 − 1). Therefore, by the definition of divides, there 
exists an integer 𝑘 such that 𝑝𝑘 = (𝑥 − 1).
By multiplying both sides of 𝑝𝑘 = (𝑥 − 1) by (𝑥 + 1), we have 𝑝𝑘(𝑥 + 1) = (𝑥 − 1)(𝑥 + 1).
…

𝑥2 ≡ 1 mod 𝑝 . 
Since 𝑥 was arbitrary, the claim holds.



Problem 3 – Number Theory
b) Repeat part (a), but don’t use any theorems from the Number Theory Reference Sheet. That is, 

show the claim directly from the definitions. 

Let 𝑝 be a prime number at least 3 and 
let 𝑥 be an integer such that 𝑥2%𝑝 = 1

Let 𝑥 be an arbitrary integer and suppose 𝑥 ≡ 1 (mod 𝑝). 

By the definition of Congruences, 𝑝 | (𝑥 − 1). Therefore, by the definition of divides, there 
exists an integer 𝑘 such that 𝑝𝑘 = (𝑥 − 1).
By multiplying both sides of 𝑝𝑘 = (𝑥 − 1) by (𝑥 + 1), we have 𝑝𝑘(𝑥 + 1) = (𝑥 − 1)(𝑥 + 1).
Rearranging the equation, we have 𝑝(𝑘(𝑥 + 1)) = (𝑥 − 1)(𝑥 + 1).
…

𝑥2 ≡ 1 mod 𝑝 . 
Since 𝑥 was arbitrary, the claim holds.



Problem 3 – Number Theory
b) Repeat part (a), but don’t use any theorems from the Number Theory Reference Sheet. That is, 

show the claim directly from the definitions. 

Let 𝑝 be a prime number at least 3 and 
let 𝑥 be an integer such that 𝑥2%𝑝 = 1

Let 𝑥 be an arbitrary integer and suppose 𝑥 ≡ 1 (mod 𝑝). 

By the definition of Congruences, 𝑝 | (𝑥 − 1). Therefore, by the definition of divides, there 
exists an integer 𝑘 such that 𝑝𝑘 = (𝑥 − 1).
By multiplying both sides of 𝑝𝑘 = (𝑥 − 1) by (𝑥 + 1), we have 𝑝𝑘(𝑥 + 1) = (𝑥 − 1)(𝑥 + 1).
Rearranging the equation, we have 𝑝(𝑘(𝑥 + 1)) = (𝑥 − 1)(𝑥 + 1).

Since (𝑥 − 1)(𝑥 + 1) = 𝑥2 − 1, by replacing (𝑥 − 1)(𝑥 + 1) with 𝑥2 − 1, we have 
𝑝(𝑘(𝑥 + 1)) = 𝑥2 − 1 

…
𝑥2 ≡ 1 mod 𝑝 . 
Since 𝑥 was arbitrary, the claim holds.



Problem 3 – Number Theory
b) Repeat part (a), but don’t use any theorems from the Number Theory Reference Sheet. That is, 

show the claim directly from the definitions. 

Let 𝑝 be a prime number at least 3 and 
let 𝑥 be an integer such that 𝑥2%𝑝 = 1
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… 𝑥2 ≡ 1 mod 𝑝 . 
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Problem 4 – Induction

For any 𝑛 ∈ ℕ, define 𝑆𝑛 to be the sum of the squares of the first n positive integers, or 
𝑆𝑛 = 12 + 22 + ⋯ + 𝑛2. 

Prove that for all 𝑛 ∈ ℕ, 𝑆𝑛 = 1

6
𝑛(𝑛+1)(2𝑛+1).

Work on this problem with the people around you.



Problem 4 – Induction 𝑆𝑛 = 12 + 22 + ⋯ + 𝑛2. 

Prove that for all 𝑛 ∈ ℕ, 𝑆𝑛 = 1

6
𝑛(𝑛+1)(2𝑛+1).

Let 𝑃(𝑛) be “”. We show 𝑃(𝑛) holds for (some) 𝑛 by induction on 𝑛.

Base Case: 𝑃(𝑏): 

Inductive Hypothesis: Suppose 𝑃(𝑘) holds for an arbitrary 𝑘 ≥ 𝑏.

Inductive Step: Goal: Show 𝑃 𝑘 + 1 :

Conclusion: Therefore, 𝑃(𝑛) holds for (some) 𝑛 by the principle of induction.
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𝑛(𝑛+1)(2𝑛+1).

Let 𝑃(𝑛) be “𝑆𝑛 = 1

6
𝑛(𝑛 + 1)(2𝑛 + 1)”. We show 𝑃(𝑛) holds for all 𝑛 ∈ ℕ by induction on 𝑛.

Base Case: 𝑃(𝑏):
Inductive Hypothesis: Suppose 𝑃(𝑘) holds for an arbitrary 𝑘 ≥ 𝑏
Inductive Step: Goal: Show 𝑃 𝑘 + 1 :

Conclusion: Therefore, 𝑃(𝑛) holds for all 𝑛 ∈ ℕ by the principle of induction.
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Base Case: 𝑃(0): When 𝑛 = 0, the sum of the squares of the first 𝑛 positive integers is the sum of no 
terms, so we have a sum of 0. Thus, 𝑆0 = 0. Since 1

6
(0)(0 + 1)(2 ⋅ 0 + 1), we know that 𝑃(0) is true.

Inductive Hypothesis: Suppose 𝑃(𝑘) holds for an arbitrary 𝑘 ≥ 𝑏
Inductive Step: Goal: Show 𝑃 𝑘 + 1 :

Conclusion: Therefore, 𝑃(𝑛) holds for all 𝑛 ∈ ℕ by the principle of induction.
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(0)(0 + 1)(2 ⋅ 0 + 1), we know that 𝑃(0) is true.

Inductive Hypothesis: Suppose 𝑃(𝑘) holds for an arbitrary 𝑘 ≥ 0, i.e. 𝑆𝑘 = 1

6
𝑘(𝑘 + 1)(2𝑘 + 1)

Inductive Step: Goal: Show 𝑃 𝑘 + 1 : 𝑆𝑘+1 = 1

6
(𝑘 + 1)((𝑘 + 1) + 1)(2(𝑘 + 1) + 1)

    𝑆𝑘+1 = 12 + 22 + ⋯ + 𝑘2 + (𝑘 + 1)2    by definition of 𝑆𝑛  
    = (12 + 22 + ⋯ + 𝑘2) + (𝑘 + 1)2  
    = 𝑆𝑘 + (𝑘 + 1)2        by definition of 𝑆𝑛  
    = ⋯
    = 1

6
𝑘 + 1 ((𝑘 + 1) + 1)(2 𝑘 + 1 + 1)

Conclusion: Therefore, 𝑃(𝑛) holds for all 𝑛 ∈ ℕ by the principle of induction.



Problem 4 – Induction 𝑆𝑛 = 12 + 22 + ⋯ + 𝑛2. 

Prove that for all 𝑛 ∈ ℕ, 𝑆𝑛 = 1

6
𝑛(𝑛+1)(2𝑛+1).

Let 𝑃(𝑛) be “𝑆𝑛 = 1

6
𝑛(𝑛 + 1)(2𝑛 + 1)”. We show 𝑃(𝑛) holds for all 𝑛 ∈ ℕ by induction on 𝑛.

Base Case: 𝑃(0): When 𝑛 = 0, the sum of the squares of the first 𝑛 positive integers is the sum of no 
terms, so we have a sum of 0. Thus, 𝑆0 = 0. Since 1

6
(0)(0 + 1)(2 ⋅ 0 + 1), we know that 𝑃(0) is true.

Inductive Hypothesis: Suppose 𝑃(𝑘) holds for an arbitrary 𝑘 ≥ 0, i.e. 𝑆𝑘 = 1

6
𝑘(𝑘 + 1)(2𝑘 + 1)

Inductive Step: Goal: Show 𝑃 𝑘 + 1 : 𝑆𝑘+1 = 1

6
(𝑘 + 1)((𝑘 + 1) + 1)(2(𝑘 + 1) + 1)

    𝑆𝑘+1 = 12 + 22 + ⋯ + 𝑘2 + (𝑘 + 1)2    by definition of 𝑆𝑛  
    = (12 + 22 + ⋯ + 𝑘2) + (𝑘 + 1)2  
    = 𝑆𝑘 + (𝑘 + 1)2        by definition of 𝑆𝑛  
    = 1

6
𝑘(𝑘 + 1)(2𝑘 + 1) + (𝑘 + 1)2     by I.H.

    = ⋯
    = 1

6
𝑘 + 1 ((𝑘 + 1) + 1)(2 𝑘 + 1 + 1)

Conclusion: Therefore, 𝑃(𝑛) holds for all 𝑛 ∈ ℕ by the principle of induction.



Problem 4 – Induction 𝑆𝑛 = 12 + 22 + ⋯ + 𝑛2. 

Prove that for all 𝑛 ∈ ℕ, 𝑆𝑛 = 1

6
𝑛(𝑛+1)(2𝑛+1).

Let 𝑃(𝑛) be “𝑆𝑛 = 1

6
𝑛(𝑛 + 1)(2𝑛 + 1)”. We show 𝑃(𝑛) holds for all 𝑛 ∈ ℕ by induction on 𝑛.

Base Case: 𝑃(0): When 𝑛 = 0, the sum of the squares of the first 𝑛 positive integers is the sum of no 
terms, so we have a sum of 0. Thus, 𝑆0 = 0. Since 1

6
(0)(0 + 1)(2 ⋅ 0 + 1), we know that 𝑃(0) is true.

Inductive Hypothesis: Suppose 𝑃(𝑘) holds for an arbitrary 𝑘 ≥ 0, i.e. 𝑆𝑘 = 1

6
𝑘(𝑘 + 1)(2𝑘 + 1)

Inductive Step: Goal: Show 𝑃 𝑘 + 1 : 𝑆𝑘+1 = 1

6
(𝑘 + 1)((𝑘 + 1) + 1)(2(𝑘 + 1) + 1)

    𝑆𝑘+1 = 12 + 22 + ⋯ + 𝑘2 + (𝑘 + 1)2    by definition of 𝑆𝑛  
    = (12 + 22 + ⋯ + 𝑘2) + (𝑘 + 1)2  
    = 𝑆𝑘 + (𝑘 + 1)2        by definition of 𝑆𝑛  
    = 1

6
𝑘(𝑘 + 1)(2𝑘 + 1) + (𝑘 + 1)2     by I.H.

    = 𝑘 + 1 (1

6
𝑘 2𝑘 + 1 + 𝑘 + 1 )

    = ⋯
    = 1

6
𝑘 + 1 ((𝑘 + 1) + 1)(2 𝑘 + 1 + 1)

Conclusion: Therefore, 𝑃(𝑛) holds for all 𝑛 ∈ ℕ by the principle of induction.



Problem 4 – Induction 𝑆𝑛 = 12 + 22 + ⋯ + 𝑛2. 

Prove that for all 𝑛 ∈ ℕ, 𝑆𝑛 = 1

6
𝑛(𝑛+1)(2𝑛+1).

Let 𝑃(𝑛) be “𝑆𝑛 = 1

6
𝑛(𝑛 + 1)(2𝑛 + 1)”. We show 𝑃(𝑛) holds for all 𝑛 ∈ ℕ by induction on 𝑛.

Base Case: 𝑃(0): When 𝑛 = 0, the sum of the squares of the first 𝑛 positive integers is the sum of no 
terms, so we have a sum of 0. Thus, 𝑆0 = 0. Since 1

6
(0)(0 + 1)(2 ⋅ 0 + 1), we know that 𝑃(0) is true.

Inductive Hypothesis: Suppose 𝑃(𝑘) holds for an arbitrary 𝑘 ≥ 0, i.e. 𝑆𝑘 = 1

6
𝑘(𝑘 + 1)(2𝑘 + 1)

Inductive Step: Goal: Show 𝑃 𝑘 + 1 : 𝑆𝑘+1 = 1

6
(𝑘 + 1)((𝑘 + 1) + 1)(2(𝑘 + 1) + 1)

    𝑆𝑘+1 = 12 + 22 + ⋯ + 𝑘2 + (𝑘 + 1)2    by definition of 𝑆𝑛  
    = (12 + 22 + ⋯ + 𝑘2) + (𝑘 + 1)2  
    = 𝑆𝑘 + (𝑘 + 1)2        by definition of 𝑆𝑛  
    = 1

6
𝑘(𝑘 + 1)(2𝑘 + 1) + (𝑘 + 1)2     by I.H.

    = 𝑘 + 1 (1

6
𝑘 2𝑘 + 1 + 𝑘 + 1 )

    = 1

6
𝑘 + 1 (𝑘 2𝑘 + 1 + 6 𝑘 + 1 )

    = ⋯
    = 1

6
𝑘 + 1 ((𝑘 + 1) + 1)(2 𝑘 + 1 + 1)

Conclusion: Therefore, 𝑃(𝑛) holds for all 𝑛 ∈ ℕ by the principle of induction.



Problem 4 – Induction 𝑆𝑛 = 12 + 22 + ⋯ + 𝑛2. 

Prove that for all 𝑛 ∈ ℕ, 𝑆𝑛 = 1

6
𝑛(𝑛+1)(2𝑛+1).

Let 𝑃(𝑛) be “𝑆𝑛 = 1

6
𝑛(𝑛 + 1)(2𝑛 + 1)”. We show 𝑃(𝑛) holds for all 𝑛 ∈ ℕ by induction on 𝑛.

Base Case: 𝑃(0): When 𝑛 = 0, the sum of the squares of the first 𝑛 positive integers is the sum of no 
terms, so we have a sum of 0. Thus, 𝑆0 = 0. Since 1

6
(0)(0 + 1)(2 ⋅ 0 + 1), we know that 𝑃(0) is true.

Inductive Hypothesis: Suppose 𝑃(𝑘) holds for an arbitrary 𝑘 ≥ 0, i.e. 𝑆𝑘 = 1

6
𝑘(𝑘 + 1)(2𝑘 + 1)

Inductive Step: Goal: Show 𝑃 𝑘 + 1 : 𝑆𝑘+1 = 1

6
(𝑘 + 1)((𝑘 + 1) + 1)(2(𝑘 + 1) + 1)

    𝑆𝑘+1 = 12 + 22 + ⋯ + 𝑘2 + (𝑘 + 1)2    by definition of 𝑆𝑛  
    = (12 + 22 + ⋯ + 𝑘2) + (𝑘 + 1)2  
    = 𝑆𝑘 + (𝑘 + 1)2        by definition of 𝑆𝑛  
    = 1

6
𝑘(𝑘 + 1)(2𝑘 + 1) + (𝑘 + 1)2     by I.H.

    = 𝑘 + 1 (1

6
𝑘 2𝑘 + 1 + 𝑘 + 1 )

    = 1

6
𝑘 + 1 (𝑘 2𝑘 + 1 + 6 𝑘 + 1 )

    = 1

6
𝑘 + 1 (2𝑘2 + 𝑘 + 6𝑘 + 6)

    = ⋯
    = 1

6
𝑘 + 1 ((𝑘 + 1) + 1)(2 𝑘 + 1 + 1)

Conclusion: Therefore, 𝑃(𝑛) holds for all 𝑛 ∈ ℕ by the principle of induction.



Problem 4 – Induction 𝑆𝑛 = 12 + 22 + ⋯ + 𝑛2. 

Prove that for all 𝑛 ∈ ℕ, 𝑆𝑛 = 1

6
𝑛(𝑛+1)(2𝑛+1).

Let 𝑃(𝑛) be “𝑆𝑛 = 1

6
𝑛(𝑛 + 1)(2𝑛 + 1)”. We show 𝑃(𝑛) holds for all 𝑛 ∈ ℕ by induction on 𝑛.

Base Case: 𝑃(0): When 𝑛 = 0, the sum of the squares of the first 𝑛 positive integers is the sum of no 
terms, so we have a sum of 0. Thus, 𝑆0 = 0. Since 1

6
(0)(0 + 1)(2 ⋅ 0 + 1), we know that 𝑃(0) is true.

Inductive Hypothesis: Suppose 𝑃(𝑘) holds for an arbitrary 𝑘 ≥ 0, i.e. 𝑆𝑘 = 1

6
𝑘(𝑘 + 1)(2𝑘 + 1)

Inductive Step: Goal: Show 𝑃 𝑘 + 1 : 𝑆𝑘+1 = 1

6
(𝑘 + 1)((𝑘 + 1) + 1)(2(𝑘 + 1) + 1)

    𝑆𝑘+1 = 12 + 22 + ⋯ + 𝑘2 + (𝑘 + 1)2    by definition of 𝑆𝑛  
    = (12 + 22 + ⋯ + 𝑘2) + (𝑘 + 1)2  
    = 𝑆𝑘 + (𝑘 + 1)2        by definition of 𝑆𝑛  
    = 1

6
𝑘(𝑘 + 1)(2𝑘 + 1) + (𝑘 + 1)2     by I.H.

    = 𝑘 + 1 (1

6
𝑘 2𝑘 + 1 + 𝑘 + 1 )

    = 1

6
𝑘 + 1 (𝑘 2𝑘 + 1 + 6 𝑘 + 1 )

    = 1

6
𝑘 + 1 (2𝑘2 + 𝑘 + 6𝑘 + 6)

    = 1

6
𝑘 + 1 2𝑘2 + 7𝑘 + 6

    = ⋯
    = 1

6
𝑘 + 1 ((𝑘 + 1) + 1)(2 𝑘 + 1 + 1)

Conclusion: Therefore, 𝑃(𝑛) holds for all 𝑛 ∈ ℕ by the principle of induction.



Problem 4 – Induction 𝑆𝑛 = 12 + 22 + ⋯ + 𝑛2. 

Prove that for all 𝑛 ∈ ℕ, 𝑆𝑛 = 1

6
𝑛(𝑛+1)(2𝑛+1).

Let 𝑃(𝑛) be “𝑆𝑛 = 1

6
𝑛(𝑛 + 1)(2𝑛 + 1)”. We show 𝑃(𝑛) holds for all 𝑛 ∈ ℕ by induction on 𝑛.

Base Case: 𝑃(0): When 𝑛 = 0, the sum of the squares of the first 𝑛 positive integers is the sum of no 
terms, so we have a sum of 0. Thus, 𝑆0 = 0. Since 1

6
(0)(0 + 1)(2 ⋅ 0 + 1), we know that 𝑃(0) is true.

Inductive Hypothesis: Suppose 𝑃(𝑘) holds for an arbitrary 𝑘 ≥ 0, i.e. 𝑆𝑘 = 1

6
𝑘(𝑘 + 1)(2𝑘 + 1)

Inductive Step: Goal: Show 𝑃 𝑘 + 1 : 𝑆𝑘+1 = 1

6
(𝑘 + 1)((𝑘 + 1) + 1)(2(𝑘 + 1) + 1)

    𝑆𝑘+1 = 12 + 22 + ⋯ + 𝑘2 + (𝑘 + 1)2    by definition of 𝑆𝑛  
    = (12 + 22 + ⋯ + 𝑘2) + (𝑘 + 1)2  
    = 𝑆𝑘 + (𝑘 + 1)2        by definition of 𝑆𝑛  
    = 1

6
𝑘(𝑘 + 1)(2𝑘 + 1) + (𝑘 + 1)2     by I.H.

    = 𝑘 + 1 (1

6
𝑘 2𝑘 + 1 + 𝑘 + 1 )

    = 1

6
𝑘 + 1 (𝑘 2𝑘 + 1 + 6 𝑘 + 1 )

    = 1

6
𝑘 + 1 (2𝑘2 + 𝑘 + 6𝑘 + 6)

    = 1

6
𝑘 + 1 2𝑘2 + 7𝑘 + 6

    = 1

6
𝑘 + 1 (𝑘 + 2)(2𝑘 + 3)

    = 1

6
𝑘 + 1 ((𝑘 + 1) + 1)(2 𝑘 + 1 + 1)

Conclusion: Therefore, 𝑃(𝑛) holds for all 𝑛 ∈ ℕ by the principle of induction.



Problem 5: Strong Induction



Problem 5 – Strong Induction

Robbie is planning to buy snacks for the members of his competitive roller-skating 
troupe. However, his local grocery store sells snacks in packs of 5 and packs of 7. 

Prove that Robbie can buy exactly 𝑛 snacks for all integers 𝑛 ≥ 24

Work on this problem with the people around you.



Problem 5 – Strong Induction

Let 𝑃(𝑛) be “”.  

We show 𝑃(𝑛) holds for all 𝑛 ≥ 𝑏𝑚𝑖𝑛 by strong induction on 𝑛.

Base Cases:

Inductive Hypothesis: Suppose 𝑃 𝑏𝑚𝑖𝑛 ∧ ⋯ ∧ 𝑃 𝑘  hold for an arbitrary all 𝑘 ≥ 𝑏𝑚𝑎𝑥. 

Inductive Step: Goal: Show 𝑃(𝑘 + 1):

Conclusion: Therefore, 𝑃(𝑛) holds for all 𝑛 ≥ 𝑏𝑚𝑖𝑛  by the principle of induction.

Can buy snacks in packs of 5 and packs of 7. 
Prove that Robbie can buy exactly 𝑛 snacks 
for all integers 𝑛≥24



Problem 5 – Strong Induction

Let 𝑃(𝑛) be “Robbie can buy exactly 𝑛 snacks with packs of 5 and 7”.  

We show 𝑃(𝑛) holds for all 𝑛 ≥ 24 by strong induction on 𝑛.

Base Cases:

Inductive Hypothesis: Suppose 𝑃 𝑏𝑚𝑖𝑛 ∧ ⋯ ∧ 𝑃 𝑘  hold for an arbitrary all 𝑘 ≥ 𝑏𝑚𝑎𝑥. 

Inductive Step: Goal: Show 𝑃(𝑘 + 1):

Conclusion: Therefore, 𝑃(𝑛) holds for all 𝑛 ≥ 24 by the principle of induction.

Can buy snacks in packs of 5 and packs of 7. 
Prove that Robbie can buy exactly 𝑛 snacks 
for all integers 𝑛≥24



Problem 5 – Strong Induction

Let 𝑃(𝑛) be “Robbie can buy exactly 𝑛 snacks with packs of 5 and 7”.  

We show 𝑃(𝑛) holds for all 𝑛 ≥ 24 by strong induction on 𝑛.

Base Cases:

Inductive Hypothesis: Suppose 𝑃 𝑏𝑚𝑖𝑛 ∧ ⋯ ∧ 𝑃 𝑘  hold for an arbitrary all 𝑘 ≥ 𝑏𝑚𝑎𝑥. 

Inductive Step: Goal: Show 𝑃(𝑘 + 1):

Conclusion: Therefore, 𝑃(𝑛) holds for all 𝑛 ≥ 24 by the principle of induction.

Can buy snacks in packs of 5 and packs of 7. 
Prove that Robbie can buy exactly 𝑛 snacks 
for all integers 𝑛≥24

How can we tell how many base cases we need?

The smallest number of snacks we can add at one time is 5. This 
tells us we probably need 5 base cases, because then the 6th case 
can be reached by adding 5 to the minimum base case



Problem 5 – Strong Induction

Let 𝑃(𝑛) be “Robbie can buy exactly 𝑛 snacks with packs of 5 and 7”.  

We show 𝑃(𝑛) holds for all 𝑛 ≥ 24 by strong induction on 𝑛.

Base Cases: 𝑛 = 24: 24 snacks can be bought with 2 packs of 7 and 2 packs of 5 snacks.

𝑛 = 25: 25 snacks can be bought with 5 packs of 5 snacks.

𝑛 = 26: 26 snacks can be bought with 3 packs of 7 and 1 pack of 5 snacks.

𝑛 = 27: 27 snacks can be bought with 1 pack of 7 and 4 packs of 5 snacks.

𝑛 = 28: 28 snacks can be bought with 4 packs of 7 snacks.

Inductive Hypothesis: Suppose 𝑃 𝑏𝑚𝑖𝑛 ∧ ⋯ ∧ 𝑃 𝑘  hold for an arbitrary all 𝑘 ≥ 𝑏𝑚𝑎𝑥. 

Inductive Step: Goal: Show 𝑃(𝑘 + 1):

Conclusion: Therefore, 𝑃(𝑛) holds for all 𝑛 ≥ 24 by the principle of induction.

Can buy snacks in packs of 5 and packs of 7. 
Prove that Robbie can buy exactly 𝑛 snacks 
for all integers 𝑛≥24



Problem 5 – Strong Induction

Let 𝑃(𝑛) be “Robbie can buy exactly 𝑛 snacks with packs of 5 and 7”.  

We show 𝑃(𝑛) holds for all 𝑛 ≥ 24 by strong induction on 𝑛.

Base Cases: 𝑛 = 24: 24 snacks can be bought with 2 packs of 7 and 2 packs of 5 snacks.

𝑛 = 25: 25 snacks can be bought with 5 packs of 5 snacks.

𝑛 = 26: 26 snacks can be bought with 3 packs of 7 and 1 pack of 5 snacks.

𝑛 = 27: 27 snacks can be bought with 1 pack of 7 and 4 packs of 5 snacks.

𝑛 = 28: 28 snacks can be bought with 4 packs of 7 snacks.

Inductive Hypothesis: Suppose 𝑃 24 ∧ 𝑃 25 ∧ ⋯ ∧ 𝑃 𝑘  hold for an arbitrary all 𝑘 ≥ 28. 

Inductive Step: Goal: Show 𝑃(𝑘 + 1):

Conclusion: Therefore, 𝑃(𝑛) holds for all 𝑛 ≥ 24 by the principle of induction.

Can buy snacks in packs of 5 and packs of 7. 
Prove that Robbie can buy exactly 𝑛 snacks 
for all integers 𝑛≥24



Problem 5 – Strong Induction

Let 𝑃(𝑛) be “Robbie can buy exactly 𝑛 snacks with packs of 5 and 7”.  

We show 𝑃(𝑛) holds for all 𝑛 ≥ 24 by strong induction on 𝑛.

Base Cases: 𝑛 = 24: 24 snacks can be bought with 2 packs of 7 and 2 packs of 5 snacks.

𝑛 = 25: 25 snacks can be bought with 5 packs of 5 snacks.

𝑛 = 26: 26 snacks can be bought with 3 packs of 7 and 1 pack of 5 snacks.

𝑛 = 27: 27 snacks can be bought with 1 pack of 7 and 4 packs of 5 snacks.

𝑛 = 28: 28 snacks can be bought with 4 packs of 7 snacks.

Inductive Hypothesis: Suppose 𝑃 24 ∧ 𝑃 25 ∧ ⋯ ∧ 𝑃 𝑘  hold for an arbitrary all 𝑘 ≥ 28. 

Inductive Step: Goal: Show 𝑃(𝑘 + 1): Robbie can buy exactly 𝑘 + 1 snacks with packs of 5 and 7.

…

Conclusion: Therefore, 𝑃(𝑛) holds for all 𝑛 ≥ 24 by the principle of induction.

Can buy snacks in packs of 5 and packs of 7. 
Prove that Robbie can buy exactly 𝑛 snacks 
for all integers 𝑛≥24



Problem 5 – Strong Induction

Let 𝑃(𝑛) be “Robbie can buy exactly 𝑛 snacks with packs of 5 and 7”.  

We show 𝑃(𝑛) holds for all 𝑛 ≥ 24 by strong induction on 𝑛.

Base Cases: 𝑛 = 24: 24 snacks can be bought with 2 packs of 7 and 2 packs of 5 snacks.

𝑛 = 25: 25 snacks can be bought with 5 packs of 5 snacks.

𝑛 = 26: 26 snacks can be bought with 3 packs of 7 and 1 pack of 5 snacks.

𝑛 = 27: 27 snacks can be bought with 1 pack of 7 and 4 packs of 5 snacks.

𝑛 = 28: 28 snacks can be bought with 4 packs of 7 snacks.

Inductive Hypothesis: Suppose 𝑃 24 ∧ 𝑃 25 ∧ ⋯ ∧ 𝑃 𝑘  hold for an arbitrary all 𝑘 ≥ 28. 

Inductive Step: Goal: Show 𝑃(𝑘 + 1): Robbie can buy exactly 𝑘 + 1 snacks with packs of 5 and 7.

We want to show that Robbie can buy exactly 𝑘 + 1 snacks. By the inductive hypothesis, we 

know that Robbie can buy exactly 𝑘 − 4 snacks, so he can buy another pack of 5 to get exactly 

𝑘 + 1 snacks.

Conclusion: Therefore, 𝑃(𝑛) holds for all 𝑛 ≥ 24 by the principle of induction.

Can buy snacks in packs of 5 and packs of 7. 
Prove that Robbie can buy exactly 𝑛 snacks 
for all integers 𝑛≥24



That’s All, Folks!

Thanks for coming to section this week!
Any questions?
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