Section MR: Midterm Review

1. Midterm Review: Translation

Let your domain of discourse be all coffee drinks. You should use the following predicates:

- $\operatorname{soy}(x)$ is true iff x contains soy milk.
- whole (x) is true iff x contains whole milk.
- $\operatorname{sugar}(x)$ is true iff x contains sugar
- $\operatorname{decaf}(x)$ is true iff x is not caffeinated.
- vegan (x) is true iff x is vegan.
- RobbieLikes (x) is true iff Robbie likes the drink x.

Translate each of the following statements into predicate logic. You may use quantifiers, the predicates above, and usual math connectors like $=$ and \neq.
(a) Coffee drinks with whole milk are not vegan.
(b) Robbie only likes one coffee drink, and that drink is not vegan.
(c) There is a drink that has both sugar and soy milk.

Translate the following symbolic logic statement into a (natural) English sentence. Take advantage of domain restriction.

$$
\forall x([\operatorname{decaf}(x) \wedge \operatorname{RobbieLikes}(x)] \rightarrow \operatorname{sugar}(x))
$$

2. Midterm Review: Set Theory

Suppose that $A \subseteq B$. Prove that $\mathcal{P}(A) \subseteq \mathcal{P}(B)$.

3. Midterm Review: Number Theory

Let p be a prime number at least 3 , and let x be an integer such that $x^{2} \% p=1$.
(a) Show that if an integer y satisfies $y \equiv 1(\bmod p)$, then $y^{2} \equiv 1(\bmod p)$. (this proof will be short!) (Try to do this without using the theorem "Raising Congruences To A Power")
(b) Repeat part (a), but don't use any theorems from the Number Theory Reference Sheet. That is, show the claim directly from the definitions.
(c) From part (a), we can see that $x \% p$ can equal 1 . Show that for any integer x, if $x^{2} \equiv 1(\bmod p)$, then $x \equiv 1$ $(\bmod p)$ or $x \equiv-1(\bmod p)$. That is, show that the only value $x \% p$ can take other than 1 is $p-1$.
Hint: Suppose you have an x such that $x^{2} \equiv 1(\bmod p)$ and use the fact that $x^{2}-1=(x-1)(x+1)$
Hint: You may the following theorem without proof: if p is prime and $p \mid(a b)$ then $p \mid a$ or $p \mid b$.

4. Midterm Review: Induction

For any $n \in \mathbb{N}$, define S_{n} to be the sum of the squares of the first n positive integers, or

$$
S_{n}=1^{2}+2^{2}+\cdots+n^{2}
$$

Prove that for all $n \in \mathbb{N}, S_{n}=\frac{1}{6} n(n+1)(2 n+1)$.

5. Midterm Review: Strong Induction

Robbie is planning to buy snacks for the members of his competitive roller-skating troupe. However, his local grocery store sells snacks in packs of 5 and packs of 7 .

Prove that Robbie can buy exactly n snacks for all integers $n \geq 24$

