
CSE 311: Foundations of Computing I Spring 2023

Problem Set 8
Due: Friday, June 2, by 11:59pm

Instructions

Solutions submission. You must submit your solution via Gradescope and on grin.cs.washington.edu
as noted. In particular:

- There are no late days for this homework. HW8 Solutions will be posted under Pages in
Canvas on Saturday, June 3rd.

- Submit your solution to tasks 1 and 2 online to grin.cs as described in the tasks themselves.

- Submit a single PDF file in Gradescope with a copy of your state diagrams from task 2 showing
how you have labeled the states of your DFAs plus your solutions to all the regular tasks 3-7.

- The extra credit is submitted separately in Gradescope

Task 1 – Design Intervention (Online) [18 pts]

For each language below, create a state machine to recognize it. Read carefully to see whether you are
asked to construct an NFA or a DFA.

For this problem, you do not need to document your states.

a) Create an NFA that recognizes all binary strings with at least two 0s or at least two 1s.

b) Create an NFA that recognizes all binary strings with at least four 0s and end with 010.
Hint: This can be done without the product construction.

c) Create a DFA that recognizes all binary strings that either have every occurrence of a 0 immediately
followed by a 1 or contain at least two 1s but not both.

Submit and check your answers to this question here:

https://grin.cs.washington.edu

Think carefully about your answer to make sure it is correct before sub-
mitting. You have only 3 chances to submit a correct answer.
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Task 2 – Devious Machinations (Online) [20 pts]

Use the algorithm from lecture to convert each of the following NFAs to DFAs.
Label each DFA state with the set of NFA states it represents in the powerset construction.

a) The NFA below:
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b) The NFA below, which is a slightly simplified version of the one that is produced by the construction
described in class on the regular expression 1˚p01˚01˚q˚:
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c) The NFA below, which is another way to match the language from HW7 Problem 5e.
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Submit and check your answers to this question here:

https://grin.cs.washington.edu

Think carefully about your answer to make sure it is correct before sub-
mitting. You have only 3 chances to submit a correct answer.
You must also submit the a screenshot/sketch of your submitted DFA
in Gradescope showing that you have correctly labelled the DFA states
with the sets of NFA state names as part of the powerset construction so
that we can check it. (You do not need to document this diagram any
further.)

Task 3 – Expression Is the Better Part of Valor [6 pts]

Use the algorithm from lecture to convert the following regular expression into an NFA that accepts the
same language. You may skip adding ε-transitions for concatenation if they are obviously unnecessary,
but otherwise, you should precisely follow the construction from lecture.

1p0 Y 111q˚ Y 000
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Task 4 – A Whole New Small Game [16 pts]

Use the algorithm from lecture to minimize the each of the following DFAs.
For each step of the algorithm, write down the groups of states, which group was split in that step

and the reason for splitting that group. At the end, write down the minimized DFA, with each state
named by the set of states of the original machine that it represents (e.g., “B,C” if it represents B and
C).
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Task 5 – Just Irregular Guy [20 pts]

Use the method described in lecture to prove that each of the following languages is not regular.

a) All binary strings in the set t0m1n02n`m : m,n ě 0u.

b) All binary strings of the form x#y, with x, y P t0, 1u˚ and x a subsequence of yR. (Here yR means
the reverse of y. Also, a string w is a subsequence of another string z if you can delete some
characters from z to arrive at w.)

Task 6 – Diagonalization [10 pts]

Let B be the set of all infinite binary sequences that are 1 in even positions, i.e., any string in B is of
the form

_ 1_ 1_ 1_ 1 . . .

where we can have 0 or a 1 instead of each “_”. Show that B is uncountable using a proof by
diagonalization.

Task 7 – Countability [10 pts]

Let Q` “ tx P Q : x ą 0u be the set of positive rational numbers. In lecture, we showed that Q` is
countable.

Prove that Q` ˆ Q`, the set of all pairs of positive rational numbers, is also countable.
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Task 8 – Extra Credit: Strings to Mind

Suppose we want to determine whether a string x of length n contains a string y “ y1y2 . . . ym with
m ! n. To do so, we construct the following NFA:

s0 s1 s2 ... sm´1 sm
y1 y2 y3 ym´1 ym

0, 1 0, 1

(where the . . . includes states s3, . . . , sm´2). We can see that this NFA matches x iff x contains
the string y.

We could check whether this NFA matches x using the parallel exploration approach, but doing
so would take Opmnq time, no better than the obvious brute-force approach for checking if x contains
y. Alternatively, we can convert the NFA to a DFA and then run the DFA on the string x. A priori, the
number of states in the resulting DFA could be as large as 2m, giving an Ωp2m ` nq time algorithm,
which is unacceptably slow. However, below, you will show that this approach can be made to run in
Opm2 ` nq time.

a) Consider any subset of states, S, found while converting the NFA above into a DFA. Prove that, for
each 1 ď j ă m, knowing sj P S functionally determines whether si P S or not for each 1 ď i ă j.

b) Explain why this means that the number of subsets produced in the construction is at most 2m.

c) Explain why the subset construction thus runs in only Opm2q time (assuming the alphabet size is
Op1q).

d) How many states would this reduce to if we then applied the state minimization algorithm?

e) Explain why part (c) leads to a bound of Opm2 ` nq for the full algorithm (without state minimiza-
tion).

f) Briefly explain how this approach can be modified to count (or, better yet, find) all the substrings
matching y in the string x with the same overall time bound.

Note that any string matching algorithm takes Ωpm ` nq “ Ωpnq time in the worst case since it
must read the entire input. Thus, the above algorithm is optimal whenever m2 is Opnq, or equivalently,
when m is Op

?
nq, which is typically the case for m and n in practice.
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