
CSE 311: Foundations of Computing
Lecture 2: Logical Equivalence

Last class: Atomic Propositions

Simplest units (words) in this logical language

Propositional Variables: 𝑝, 𝑞, 𝑟, 𝑠, …

Truth Values:
– T for true
– F for false

Last class: Some Connectives & Truth Tables

p ¬p
T F

F T

p q p Ù q
T T T

T F F

F T F

F F F

p q p Ú q
T T T

T F T

F T T

F F F

p q p Å q
T T F

T F T

F T T

F F F

Negation (not) Conjunction (and)

Disjunction (or) Exclusive Or

Last class: Implication

“If it’s raining, then I have my umbrella”

In English, we can also write
“I have my umbrella if it is raining”

p q p ® q

T T T

T F F

F T T

F F T

Last class: Truth Table for Vaccine Sentence

𝒑 𝒒 𝒓 ¬𝒓 𝒑 ∧ 𝒒 ¬𝒓 ⟶ (𝒑 ∧ 𝒒) 𝒑 ∨ 𝒒 ¬(𝒑 ∨ 𝒒) 𝒓 → ¬(𝒑 ∨ 𝒒) ¬𝒓 ⟶ 𝒑 ∧ 𝒒 ∧
(𝒓 → ¬(𝒑 ∨ 𝒒))

T T T F T T T F F F

T T F T T T T F T T

T F T F F T T F F F

T F F T F F T F T F

F T T F F T T F F F

F T F T F F T F T F

F F T F F T F T T T

F F F T F T F T T T

(¬𝒓 → (𝒑 ∧ 𝒒)) ∧ (𝒓 → ¬(𝒑 ∨ 𝒒))

Last class: Biconditional: 𝑝 ↔ 𝑞

• p if and only if q (p iff q)
• p is true exactly when q is true
• p implies q and q implies p
• p is necessary and sufficient for q

p q p	«q p	→q q	→p (p	→q)	Ù (q	→p)
T T T T T T

T F F F T F

F T F T F F

F F T T T T

Converse, Contrapositive

Implication:
p ® q

Converse:
q ® p

Consider
p: x is divisible by 2
q: x is divisible by 4

Contrapositive:
¬q ® ¬p

Inverse:
¬p ® ¬q

p ® q

q ® p

¬q ® ¬p

¬p ® ¬q

Converse, Contrapositive

Implication:
p ® q

Converse:
q ® p

Consider
p: x is divisible by 2
q: x is divisible by 4 Divisible By 2 Not Divisible By 2

Divisible By 4

Not Divisible By 4

Contrapositive:
¬q ® ¬p

Inverse:
¬p ® ¬q

p ® q

q ® p

¬q ® ¬p

¬p ® ¬q

Converse, Contrapositive

Implication:
p ® q

Converse:
q ® p

Consider
p: x is divisible by 2
q: x is divisible by 4 Divisible By 2 Not Divisible By 2

Divisible By 4 4,8,12,... Impossible

Not Divisible By 4 2,6,10,... 1,3,5,...

Contrapositive:
¬q ® ¬p

Inverse:
¬p ® ¬q

p ® q

q ® p

¬q ® ¬p

¬p ® ¬q

Converse, Contrapositive

Implication:
p ® q

Converse:
q ® p

Consider
p: x is divisible by 2
q: x is divisible by 4 Divisible By 2 Not Divisible By 2

Divisible By 4 4,8,12,... Impossible

Not Divisible By 4 2,6,10,... 1,3,5,...

Contrapositive:
¬q ® ¬p

Inverse:
¬p ® ¬q

p ® q F

q ® p T

¬q ® ¬p F

¬p ® ¬q T

Converse, Contrapositive

Implication:
p ® q

Converse:
q ® p

How do these relate to each other?

Contrapositive:
¬q ® ¬p

Inverse:
¬p ® ¬q

p q p ® q q® p ¬p ¬q ¬p ® ¬q ¬q ® ¬p

T T

T F

F T

F F

Converse, Contrapositive

Implication:
p ® q

Converse:
q ® p

An implication and it’s contrapositive
have the same truth value!

Contrapositive:
¬q ® ¬p

Inverse:
¬p ® ¬q

p q p ® q q ® p ¬p ¬q ¬p ® ¬q ¬q ® ¬p

T T T T F F T T

T F F T F T T F

F T T F T F F T

F F T T T T T T

Tautologies!
Terminology: A compound proposition is a…
– Tautology if it is always true
– Contradiction if it is always false
– Contingency if it can be either true or false

p Ú ¬p

p Å p

(p ® q) Ù p

Tautologies!
Terminology: A compound proposition is a…
– Tautology if it is always true
– Contradiction if it is always false
– Contingency if it can be either true or false

p Ú ¬p

p Å p

(p ® q) Ù p

This is a tautology. It’s called the “law of the excluded middle.
If p is true, then p Ú ¬p is true. If p is false, then p Ú ¬p is true.

This is a contradiction. It’s always false no matter what truth
value p takes on.

This is a contingency. When p is T, q is T, it is true.
When p is F, q is T, it is false.

Logical Equivalence

A = B means A and B are identical “strings”:
– p Ù q = p Ù q

– p Ù q ≠ q Ù p

Logical Equivalence

A = B means A and B are identical “strings”:
– p Ù q = p Ù q

– p Ù q ≠ q Ù p

A º B means A and B have identical truth values:
– p Ù q º p Ù q

– p Ù q º q Ù p

– p Ù q ≢ q Ú p

These are equal, because they are character-for-character identical.

These are NOT equal, because they are different sequences of
characters. They “mean” the same thing though.

Logical Equivalence

A = B means A and B are identical “strings”:
– p Ù q = p Ù q

– p Ù q ≠ q Ù p

A º B means A and B have identical truth values:
– p Ù q º p Ù q

– p Ù q º q Ù p

– p Ù q ≢ q Ú p

These are equal, because they are character-for-character identical.

These are NOT equal, because they are different sequences of
characters. They “mean” the same thing though.

Two formulas that are equal also are equivalent.

These two formulas have the same truth table!

When p=T and q=F, p ∧	q is false, but p ∨	q is true!

A « B vs. A º B

A « B is a proposition that may be true or false
depending on the truth values of A and B.

A º B is an assertion over all possible truth values
that A and B always have the same truth values.

A º B and (A « B) º T have the same meaning
as does “A « B is a tautology”

Logical Equivalence A º B

A º B is an assertion that two propositions A and B
always have the same truth values.

A º B and (A « B) º T have the same meaning.

p Ù q º q Ù p p q p Ù q q Ù p (p Ù q) « (q Ù p)
T T T T T

T F F F T

F T F F T

F F F F T

p Ù q ≢ q Ú p

When p is T and q is F, p ∧	q is false, but q ∨	p is true

De Morgan’s Laws

¬(p Ù q) º ¬p Ú ¬q
¬(p Ú q) º ¬p Ù ¬q

Negate the statement:
“My code compiles or there is a bug.”

To negate the statement,
ask “when is the original statement false”.

It’s false when not(my code compiles) AND not(there is a bug).

Translating back into English, we get:
My code doesn’t compile and there is not a bug.

De Morgan’s Laws

p q ¬p ¬q ¬p Ú ¬q p Ù q ¬(p Ù q)
T T F F F T F

T F F T T F T

F T T F T F T

F F T T T F T

Example: ¬(p Ù q) º ¬p Ú ¬q

De Morgan’s Laws

¬(p Ù q) º ¬p Ú ¬q
¬(p Ú q) º ¬p Ù ¬q

if (!(front != null && value > front.data)) {
front = new ListNode(value, front);

} else {
ListNode current = front;
while (current.next != null && current.next.data < value))

current = current.next;
current.next = new ListNode(value, current.next);

}

De Morgan’s Laws

¬(p Ù q) º ¬p Ú ¬q
¬(p Ú q) º ¬p Ù ¬q

!(front != null && value > front.data)

front == null || value <= front.data

º

Law of Implication

p q p ® q ¬p ¬p Ú q
T T

T F

F T

F F

p ® q º ¬p Ú q

Law of Implication

p q p ® q ¬p ¬p Ú q
T T T F T

T F F F F

F T T T T

F F T T T

p ® q º ¬p Ú q

Some Familiar Properties of Arithmetic

• 𝑥 + 𝑦 = 𝑦 + 𝑥 (Commutativity)
– 𝑝 ∨ 𝑞 ≡ 𝑞 ∨ 𝑝
– 𝑝 ∧ 𝑞 ≡ 𝑞 ∧ 𝑝

• 𝑥 ⋅ 𝑦 + 𝑧 = 𝑥 ⋅ 𝑦 + 𝑥 ⋅ 𝑧 (Distributivity)
– 𝑝 ∧ 𝑞 ∨ 𝑟 ≡ 𝑝 ∧ 𝑞 ∨ (𝑝 ∧ 𝑟)
– 𝑝 ∨ 𝑞 ∧ 𝑟 ≡ 𝑝 ∨ 𝑞 ∧ (𝑝 ∨ 𝑟)

• 𝑥 + 𝑦 + 𝑧 = 𝑥 + (𝑦 + 𝑧) (Associativity)
– 𝑝 ∨ 𝑞 ∨ 𝑟 ≡ 𝑝 ∨ 𝑞 ∨ 𝑟
– 𝑝 ∧ 𝑞 ∧ 𝑟 ≡ 𝑝 ∧ (𝑞 ∧ 𝑟)

Important Equivalences

Some Familiar Properties of Arithmetic

• 𝑥 ⋅ 1 = 𝑥 (Identity)
• 𝑥 + 0 = 𝑥

• 𝑥 ⋅ 0 = 0 (Domination)

Important Equivalences

Some Familiar Properties of Arithmetic

• Usual properties hold under relabeling:
– 0, 1 becomes F, T
– “+” becomes “Ú”
– “ ⋅ ” becomes “Ù”

• But there are some new facts:
– Distributivity works for both “Ù” and “Ú”
– Domination works with T

• There are some other facts specific to logic…

Important Equivalences

Important Equivalences

Using Equivalences

• Note that p, q, and r can be any propositions
(not just atomic propositions)

• Ex: (r ® s) Ù (¬t) º (¬t) Ù (r ® s)

– apply commutativity: p Ù q º q Ù p
with p := r ® s
and q := ¬t

One more easy equivalence

p ¬ p ¬ ¬ p

T F T

F T F

Double Negation

𝑝 ≡ ¬ ¬ 𝑝

Understanding logic and circuits

When do two logic formulas mean the same thing?

What logical properties can we infer from other ones?

Basic rules of reasoning and logic

• Working with logical formulas
– Simplification
– Testing for equivalence

• Applications
– Query optimization
– Search optimization and caching
– Artificial Intelligence
– Program verification

Computing Equivalence

Given two propositions, can we write an algorithm to
determine if they are equivalent?

What is the runtime of our algorithm?

Computing Equivalence

Given two propositions, can we write an algorithm to
determine if they are equivalent?

Yes! Generate the truth tables for both propositions and check
if they are the same for every entry.

What is the runtime of our algorithm?

Every atomic proposition has two possibilities (T, F). If there are
𝒏 atomic propositions, there are 𝟐𝒏 rows in the truth table.

Another approach: Logical Proofs

To show A is equivalent to B
– Apply a series of logical equivalences to

sub-expressions to convert A to B

To show A is a tautology
– Apply a series of logical equivalences to

sub-expressions to convert A to T

Another approach: Logical Proofs

To show A is equivalent to B
– Apply a series of logical equivalences to

sub-expressions to convert A to B

Example:
Let A be “𝑝 ∨ (𝑝 ∧ 𝑝)”, and B be “𝑝”.
Our general proof looks like:

𝑝 ∨ 𝑝 ∧ 𝑝 ≡ ()
≡ 𝑝

Another approach: Logical Proofs

Example:
Let A be “𝑝 ∨ (𝑝 ∧ 𝑝)”, and B be “𝑝”.
Our general proof looks like:

𝑝 ∨ 𝑝 ∧ 𝑝 ≡ ()
≡ 𝑝

Logical Proofs

Example:
Let A be “𝑝 ∨ (𝑝 ∧ 𝑝)”, and B be “𝑝”.
Our general proof looks like:

𝑝 ∨ 𝑝 ∧ 𝑝 ≡ ()
≡ 𝑝

𝑝 ∨ 𝑝 Idempotent
Idempotent

Logical Proofs

To show A is a tautology
– Apply a series of logical equivalences to

sub-expressions to convert A to T

Example:
Let A be “¬𝑝 ∨ (𝑝 ∨ 𝑝)”.
Our general proof looks like:

¬𝑝 ∨ 𝑝 ∨ 𝑝 ≡ ()
≡ ()
≡ T

Logical Proofs

Example:
Let A be “¬𝑝 ∨ (𝑝 ∨ 𝑝)”.
Our general proof looks like:

¬𝑝 ∨ 𝑝 ∨ 𝑝 ≡ ()
≡ ()
≡ T

Logical Proofs

Example:
Let A be “¬𝑝 ∨ (𝑝 ∨ 𝑝)”.
Our general proof looks like:

¬𝑝 ∨ 𝑝 ∨ 𝑝 ≡ ()
≡ ()
≡ T

¬𝑝 ∨ 𝑝 Idempotent

Negation
𝑝 ∨ ¬𝑝 Commutative

Prove these propositions are equivalent: Option 1

𝒑 𝒓 𝒑 → 𝒓 𝒑 ∧ (𝒑 → 𝒓) 𝒑 ∧ 𝒓 𝒑 ∧ (𝒑 → 𝒓) ⟷ 𝒑 ∧ 𝒓
T T T T T T

T F F F F T

F T T F F T

F F T F F T

Make a Truth Table and show:

𝑝 ∧ (𝑝 → 𝑞) ⟷ 𝑝 ∧ 𝑟 ≡ T

Prove: p Ù (p ® q) º p Ù q

Prove these propositions are equivalent: Option 2

Prove: p Ù (p ® q) º p Ù q

𝑝 ∧ 𝑝 → 𝑞 ≡
≡
≡
≡
≡ 𝑝 ∧ 𝑞

Prove these propositions are equivalent: Option 2

Prove: p Ù (p ® q) º p Ù q

𝑝 ∧ 𝑝 → 𝑞 ≡ 𝑝 ∧ (¬𝑝 ∨ 𝑞)
≡ 𝑝 ∧ ¬𝑝 ∨ (𝑝 ∧ 𝑞)
≡ F ∨ (𝑝 ∧ 𝑞)
≡ 𝑝 ∧ 𝑞 ∨ F
≡ 𝑝 ∧ 𝑞

Law of Implication
Distributive
Negation

Commutative
Identity

Prove this is a Tautology: Option 1

(p Ù r) ® (r Ú p)

𝒑 𝒓 𝒑 ∧ 𝒓 𝒓 ∨ 𝒑 𝒑 ∧ 𝒓 → 𝒓 ∨ 𝒑
T T

T F

F T

F F

Make a Truth Table and show:

𝑝 ∧ 𝑟 → 𝑟 ∨ 𝑝 ≡ T

Prove this is a Tautology: Option 1

(p Ù r) ® (r Ú p)

𝒑 𝒓 𝒑 ∧ 𝒓 𝒓 ∨ 𝒑 𝒑 ∧ 𝒓 → 𝒓 ∨ 𝒑
T T T T T

T F F T T

F T F T T

F F F F T

Make a Truth Table and show:

𝑝 ∧ 𝑟 → 𝑟 ∨ 𝑝 ≡ T

Prove this is a Tautology: Option 2

(p Ù r) ® (r Ú p)
Use a series of equivalences like so:

𝑝 ∧ 𝑟 → 𝑟 ∨ 𝑝 ≡
≡
≡
≡
≡
≡
≡
≡
≡ T

Prove this is a Tautology: Option 2

(p Ù r) ® (r Ú p)
Use a series of equivalences like so:

𝑝 ∧ 𝑟 → 𝑟 ∨ 𝑝 ≡ ¬ 𝑝 ∧ 𝑟 ∨ (𝑟 ∨ 𝑝)
≡ ¬𝑝 ∨ ¬𝑟 ∨ (𝑟 ∨ 𝑝)
≡ ¬𝑝 ∨ (¬𝑟 ∨ 𝑟 ∨ 𝑝)
≡ ¬𝑝 ∨ (¬𝑟 ∨ 𝑟 ∨ 𝑝)
≡ ¬𝑝 ∨ (𝑝 ∨ ¬𝑟 ∨ 𝑟)
≡ (¬𝑝 ∨ 𝑝) ∨ ¬𝑟 ∨ 𝑟
≡ (𝑝 ∨ ¬𝑝) ∨ 𝑟 ∨ ¬𝑟
≡ T ∨ T
≡ T

Law of Implication
De Morgan

Associative
Associative
Commutative
Associative
Commutative (twice)

Negation (twice)
Domination/Identity

Logical Proofs of Equivalence/Tautology

• Not smaller than truth tables when there are only
a few propositional variables...

• ...but usually much shorter than truth table proofs
when there are many propositional variables

• A big advantage will be that we can extend them
to a more in-depth understanding of logic for
which truth tables don’t apply.

