CSE 311.: Foundations of Computing

Lecture 6: Predicate Logic, Logical Inference

AND OVER THERE WE HAVE THE LABYRINTH GUARDS.
ONE ALWAYS LIES, ONE ALWAYS TELLS THE TRUTH, AND
ONE STABS PEOPLE WHO ASK TRICKY QUESTIONS.

Last Class: Quantifiers

We use quantifiers to talk about collections of objects.

Vx P(x) I @)

P(x) is true for every x in the domain QUANTIFIEH
read as “for all x, P of x”

3x P(x)
There is an x in the domain for which P(x) is true
read as “there exists x, P of x”

Last class: Predicate Logic to English (Natural)

Predicate Definitions

Even(x) ::= “x is even” Greater(x, y) ::= “x>vy”
Odd(x) ::= “x is odd” Equal(x, y) ::= “x=y”
\Prime(x) ::= “x is prime” Sum(x, y, z) ::= “x+y =2")

Domain of Discourse
| Positive Integers

Translate the following statements to English

Vx dy Greater(y, x)
For every positive integer, there is a larger positive integer.
dy Vx Greater(y, x)
There is a positive integer that is larger than every other positive integer.

Vx dy (Greater(y, x) A Prime(y))

For every positive integer, there is a prime that is larger.

Sound more natural without introducing variable names

Last class: English to Predicate Logic (Domain Restriction)

—_—<

Predicate Definitions

Cat(x) ::= “xis a cat”

Red(x) ::= “x is red”
\LikesTofu(x) ::= “x likes tofu”

Domain of Discourse
Mammals

“All red cats like tofu”

VX ((Red(x) A Cat(x)) — LikesTofu(x))

“Some red cats don’t like tofu”

dy ((Red(y) A Cat(y)) A —LikesTofu(y))

Last class: Negations of Quantifiers

Predicate Definitions
| PurpleFruit(x) ::= “xis a purple fruit”

(*) Vx PurpleFruit(x) (“All fruits are purple”)

What is the negation of (*)?
(a) “there exists a purple fruit”
(b) “there exists a non-purple fruit”
(c) “all fruits are not purple”

Domain of Discourse
{plum, apple}

(*) PurpleFruit(plum) A PurpleFruit(apple)

(a) PurpleFruit(plum) v PurpleFruit(apple)
(b) — PurpleFruit(plum) v — PurpleFruit(apple)
(c) — PurpleFruit(plum) A — PurpleFruit(apple)

Last class: De Morgan’s Laws for Quantifiers

—Vx P(x) = dx — P(x)
— dx P(x) = Vx — P(x)

Intuition: V is like a giant AND over the domain
7 is like a giant OR over the domain

Last class: De Morgan’s Laws for Quantifiers

—Vx P(x) = dx — P(x)
— dx P(x) = Vx — P(x)

These are equivalent but not equal
They have different English translations, e.g.:

There is no unicorn — dx Unicorn(x)

Every animal is not a unicorn V¥x — Unicorn(x)

Last class: De Morgan’s Laws for Quantifiers

—Vx P(x) = Ix — P(x)
— dx P(x) = Vx — P(x)

“There is no integer at least as large as every other integer”

—dxVy (x2y)
= Vx=aVy (x2y)
Vx dy—=(x2y)
Vx 3y (y>x)

“For every integer, there is a larger integer”

De Morgan’s Laws for Quantifiers

—Vx P(x) = dx — P(x)
— dx P(x) = Vx — P(x)

“No even prime is greater than 2”

— dx (Even(x) A Prime(x) A Greater(x, 2))

Vx —(Even(x) A Prime(x) A Greater(x, 2))
Vx (—(Even(x) A Prime(x)) v —Greater(x, 2))
VX ((Even(x) A Prime(x)) — —Greater(x, 2))
Vx ((Even(x) A Prime(x)) — LessEq(x, 2))

“Every even prime is less than or equal to 2.”

De Morgan’s Laws for Quantifiers

We just saw that

— dx (P(x) A R(x)) = Vx (P(x) = — R(x))

Can similarly show that

—Vx (P(x) = R(x)) = dx (P(x) A = R(x))

De Morgan’s Laws respect domain restrictions!
(It leaves them in place and only negates the other parts.)

De Morgan’s Laws for Quantifiers

— VX P(x) = dx — P(x)
— dx P(x) = Vx — P(x)

Remain true when domain restrictions are used:

— Ix (P(x) A R(x)) = Vx (P(x) = — R(x))
—Vx (P(x) = R(x)) = dx (P(x) A = R(x))

Scope of Quantifiers

Ix (P(x) A Q(x)) vs. Fx P(x)) A (Ix Q(x))

Scope of Quantifiers

Ix (P(x) AQ(x)) vs. (Ix P(x)) A (Ix Q(x))

Px (00 AR (¥) N (91000)

This one asserts P This one asserts P and Q
and Q of the same x. of potentially different x’s.

Scope of Quantifiers boeskon) < QL T Greder

—l’(\,ﬂﬂv\mb
!)

Example: NotlLargest(x) = dvy Greater (y, L)f)
= 1z Greater (z, x)

\—

truth value:
£

doesn’t depend on y or z “bound variables”

P

does depend on X “free variable”
Par—

quantifiers only act on free variables of the formula
they quantify

Lvl((a y (P(x,y) = Lv_ﬁl(v, X)))

Quantifier “Style”

Vx(3y (P(x,y) = V x Q(y, x)))

This isn’t “wrong”, it’s just horrible style.
Don’t confuse your reader by using the same
variable multiple times...there are a lot of letters...

Nested Quantifiers

 Quantified variable names don’t matter
Vx dy P(x, y) = Va db P(a, b)

* Positions of quantifiers can sometimes change
Vx (Q(x) A Jy P(x, y)) = Vx Jy (Q(x) A P(x, y))

« But: orderis important...

Quantifier Order Can Matter

Domain of Discourse Predicate Definitions
{1, 2,3, 4}) GreaterEq(x, y) ::=“x2y”
1 2
1] H ” 1 T F
There is a number greater than or equal to all numbers. 5
TI|T
X
dx Vy GreaterEq(x, y))) 31T
'_ [—4 T|T

=AW
A |D

Quantifier Order Can Matter

Domain of Discourse

Predicate Definitions

{1I 2’ 3’ 4}

GreaterEq(x, y) ::= “x>y”

“There is a number greater than or equal to all numbers.”

dx Yy GreaterEq(x, y)))

x2
3
4

“Every number has a number greater than or equal to it.”

Vy dx GreaterEq(x, y)))

Yy

2 3 4
T [F|F
T T |F|F
|t
TTT T T
T

Quantifier Order Can Matter

Domain of Discourse

Predicate Definitions

{1I 2’ 3’ 4}

“There is a number greater than or equal to all numbers.”

dx Vy GreaterEq(x, y))) 3

“Every number has a nhumber greater than or equal to it.” [—4

GreaterEq(x, y) ::= “x>y”

2

| B

X

== [N

— | ™ W

— = |1l =

Vy dx GreaterEq(x, y)))

— e,

The purple statement requires an entire row to be true.
The red statement requires one entry in each column to be true.

.

v,

4)
Important: both include the case x =y /

Different names does not imply different objects!

Quantification with Two Variables

)

HNWN PR

A H] AR
IR
—A| =[] "|W

Al D

expression

&S

when true

<

when false

>

\4

VXV y P(x, y)

Every pair is true.

At least one pair is false.

dx3yP(x,y)

At least one pair is true.

All pairs are false.

V x3yP(x,y)

We can find a specific y for
each x.

(X1, Y1), (X2, ¥2), (X3, ¥3)

Some x doesn’t have a
corresponding y.

dy V xP(x,y)

We can find ONE y that
works no matter what x is.

(Xll y)l (XZI y)l (X3I y)

For any candidate y, there is
an x that it doesn’t work for.

Logical Inference

e So far we’ve considered:

— How to understand and express things using
propositional and predicate logic

— How to compute using Boolean (propositional) logic

— How to show that different ways of expressing or

omputing them are equivalent to each other
s

* Logic also has methods that let us infer implied
properties from ones that we know

— Equivalence is a small part of this

New Perspective

Rather than comparin@and B as columns,
zoom in on just the rows where A is true:

N\ e~

B

T 1 1S

M| 4R
M| =D

New Perspective

Rather than comparing A and B as columns,
zoom in on just the rows where A is true:

B
T &
T

T 1 1S

M| 4R
M| =D

Given that A is true, we see that B is also true.

A=0B
— —

New Perspective

Rather than comparing A and B as columns,
zoom in on just the rows where A is true:

T 1 1S

M| =D
V| vl 1||®

T4 4 [V

When we zoom out, what have we proven?

New Perspective

Rather than comparing A and B as columns,
zoom in on just the rows where B is true:

A—>B

]
)

a4

M m|a]4|>

M| || n | 4R
M| (|||
— ==

When we zoom out, what have we proven?

[Az
A=7% (A — B) [#=b

! \\ peo b)) =T

New Perspective

Equivalences
AZB and (A <> B) =T are the same

—
Inference
A = B and (A — B) =T are the same
.—/7 — -~

Can do the inference by [zooming inJ
to the rows where A is true

Applications of Logical Inference

Software Engineering

— EXxpress desired properties of program as set of logical
constraints

— Use inference rules to show that program implies that
those constraints are satisfied

Artificial Intelligence

— Automated reasoning

Algorithm design and analysis

— e.g., Correctness, Loop invariants.
Logic Programming, e.g. Prolog

— Express desired outcome as set of constraints
— Automatically apply logic inference to derive solution

Proofs

* Start with given facts (hypotheses)
 Use rules of inference to extend set of facts

* Result is proved when it is included in the set
—

An inference rule: Modus Ponens

\

’ If Aand A — B are both true, then B must be true

\,\Mo’(\:\l,stj
. Write thisruleas A:A—B /(;oux
.. B CO\/\ U\J(@
* Given:
— If it is Friday, then you have a 311 class today.
— It is Friday.

* Therefore, by Modus Ponens:
— You have a 311 class today.

My First Proof! GIVOMS
U

M
Show tha@llows fron@o, p—q,andq —>J

1. p Given
2. p - q Given
3. qg—1r Given
4. W\O[}\u\ﬁ Y onknS, \‘7—
5. ﬁ Modus Pontrs 5 24

A:A—>B
s B

Modus Ponens

My First Proof!

Show that r follows fromp,p > g,and g —>r

1. p Given
2. p - q Given
3. qg—1r Given
4. q MP: 1, 2
5. r MP: 3, 4

Modus Ponens

A:A—>B
s B

Proofs can use equivalences too

Show that —p follows from p — q and —q

1. p—q Given

2. —q Given

3. —q—>-p Contrapositive: 1|
4. —p MP: 2, 3

A:A—>B
s B

Modus Ponens

Inference Rules

If A is true and B is true

Requirements: A : B
Conclusions: .. C , D
Then, C must Then D must
be true be true

Example (Modus Ponens):

A; A—>B If | have A and A — B both true,
B Then B must be true.

Axioms: Special inference rules

If | have nothing...

Requirements:

Conclusions: .. C , D

Then, C must Then D must
be true be true

Example (Excluded Middle):

A v—A must be true.

Simple Propositional Inference Rules

Two inference rules per binary connective,
one to eliminate it and one to introduce it

Elim A AnB A) B
m Intro A
A, B ~“AAB
Elim Vv A Vv B ; _'A Intro V A
- B ~AvB BVvA
Modus Ponens A @_;;@ Direct Proof A —> B
- B A —>B

N

Not like other rules

Proofs

Show that r follows fromp,p > gand (pAq) > r

How To Start:
We have givens, find the ones that go A;A—B
together and use them. Now, treat new - B
things as givens, and repeat.
. P o7oem AnB
~ A B
7, poq Lie
\1) = (0708 B
L(ML 2 :
~ 0[~AAB

5(P/\F\ Lt \: \, Y

Proofs

Show that r follows fromp,p > g, andp Aq —> r

1. p Given
Two visuals of the same proof. 2. p—q Given
We will use the top one, but if 3. g MP: 1, 2
the bottom one helps you 4. pAg Intro A: 1. 3
think about it, that’s great! ' . S
5. pAq— 1 Given
6. 1 MP: 4, 5

p p_)qMP
: q

Intro A

