CSE 311: Foundations of Computing

Lecture 6: Predicate Logic, Logical Inference

AND OVER THERE WE HAVE THE LABYRINTH GUARDS.
ONE ALWAYS LIES, ONE ALWAYS TELLS THE TRUTH, AND
ONE STABS PEOPLE WHO ASK TRICKY QUESTIONS.

Last Class: Quantifiers

We use quantifiers to talk about collections of objects.

Vx P(x) I @)

P(x) is true for every x in the domain QUANTIFIEE
read as “for all x, P of x”

dx P(x)
There is an x in the domain for which P(x) is true
read as “there exists x, P of x”

Last class: Predicate Logic to English (Natural)

Predicate Definitions

Domain of Discourse Even(x) ::= “x is even” Greater(x, y) ::= “x>vy”

| Positive Integers Odd(x) ::= “x is odd” Equal(x, y) ::= “x = y”
\Prime(x) ::= “x is prime” Sum(x, y, z) ::= “x+y=2")

Translate the following statements to English

Vx dy Greater(y, x)

For every positive integer, there is a larger positive integer.
dy Vx Greater(y, x)

There is a positive integer that is larger than every other positive integer.
Vx Ay (Greater(y, x) A Prime(y))

For every positive integer, there is a prime that is larger.

Sound more natural without introducing variable names

Last class: English to Predicate Logic (Domain Restriction)

Predicate Definitions

Domain of Discourse Cat(x) ::= “x is a cat”
Mammals | Red(x) ::= “x is red”

\LikesTofu(x) ::= “x likes tofu”)

“All red cats like tofu”

Vx ((Red(x) A Cat(x)) — LikesTofu(x))

“Some red cats don’t like tofu”

dy ((Red(y) A Cat(y)) A —LikesTofu(y))

- %

Last class: Negations of Quantifiers

Predicate Definitions
| PurpleFruit(x) ::= “xis a purple fruit” |

(*) Vx PWt(x)?”AII fruits are purple”)

What is the negation of (*)?
(a) “there exists a purple fruit”
(b) “there exists a non-purple fruit”
(c) “all fruits are not purple”

Domain of Discourse
{plum, apple}

by J
ﬁ(*) PurpleFruit(plum) A PurpleFruit(apple) \

(a) PurpleFruit(plum) v PurpleFruit(apple)
(b) — PurpleFruit(plum) VT PurpleFruit(apple)
(c) — PurpleFruit(plum) A = PurpleFruit(apple)

Last class: De Morgan’s Laws for Quantifiers

—Vx P(x) = dx — P(x)
— dx P(x) = Vx = P(x)

Intuition: V is like a giant AND over the domain
dis like a giant OR over the domain

S

Last class: De Morgan’s Laws for Quantifiers

—Vx P(x) = 3x = P(x)
— dx P(x) = Vx = P(x)

These are equivalent but not equal
They have different English translations, e.g.:
There is no unicorn — dx Unicorn(x)

Every animal is not a unicorn ¥x — Unicorn(x)

Last class: De Morgan’s Laws for Quantifiers

—Vx P(x) = Ix — P(x)
— 3Ix P(x) = Vx — P(x)

“There is no integer at least as large as every other integer”

—3dxVy (x2y)
= Vx—Vy (x2y)
=Vx dy—(x2y)
= Vx dy (y>x)

“For every integer, there is a larger integer”

De Morgan’s Laws for Quantifiers

—Vx P(x) = dx — P(x)
— dx P(x) = Vx = P(x)

“No even prlme is greater than 2"

ven(x)/\Prlme(x) Greater(x, 2))
X — n(X (x) A Greater(x 2
= Vx (—(Even(x) A Prlme(x) —Greater(x, 2))
= Vx ({Even(x) A Prime(x)) = —Greater(x, 2))
= Vx ((Even(x) A Prime(x)) — LessEq(x, 2))

“Every even prime is less than or equal to 2.”

De Morgan’s Laws for Quantifiers

We just saw that

— dx (P(x) A R(x)) = Vx (P(x) = — R(x))

Can similarly show that

—Vx (P(x) = R(x)) = dx (P(x) A = R(x))

De Morgan’s Laws respect domain restrictions!
(It leaves them in place and only negates the other parts.)

De Morgan’s Laws for Quantifiers

—Vx P(x) = dx = P(x)
— dx P(x) = Vx = P(x)

Remain true when domain restrictions are used:

— dAx (P(x) A R(x)) = Vx (P(x) — — R(x))
—Vx (P(x) — R(x)) = dx (P(x) A = R(x))

Scope of Quantifiers

dx (P(x) AQ(x)) vs. (IxP(x)) A (Ix Q(x))

_—

Scope of Quantifiers

dx (P(x) AQ(x)) vs. (IxP(x)) A (IxQ(x))
- _— ——

This one asserts P This one asserts P and Q
and Q of the same x. of potentially different x’s.

Scope of Quantifiers

J
Example: Notlargest(x) = dvy Greater (y, x)
] = J7 Greater (z, x) ¢

truth value:

doesn’t depend on y or Zz “bound variables”

~

does depend on X “free variable”

quantifiers only act on free variables of the formula

they quantify v ‘47
vV x (Ay (Plxy) =\ x Qly, x)))

2 %

Quantifier “Style”

Vx(3y (P(x,y) = ¥ x Qly, x)))

This isn’t “wrong”, it’s just horrible style.
Don’t confuse your reader by using the same
variable multiple times...there are a lot of letters...

Nested Quantifiers

 Quantified variable names don’t matter
Vx dy P(x, y) = Va db P(a, b)

* Positions of quantifiers can sometimes change
Vx (Q(x) A Jy P(x, y)) = Vx Jy (Q(x) A P(x, y))
‘_—\

« But: orderis important...

Quantifier Order Can Matter

Domain of Discourse

Predicate Definitions

t1,2,3,4) GreaterEq(x, y) ::= “x 2y” |
Yy
1 2 3 4
’ ' Al T FIFIF
There is a number greater than or equal to all numbers.

21 T|T|F|F

X \
3x Vy GreaterEq(x,))) QR
(H» —

f-el 4’_L I | T T j

Quantifier Order Can Matter

Domain of Discourse

Predicate Definitions

{1,2,3,4;

GreaterkEq(x, y) ::= “x2y” |

“There is a number greater than or equal to all numbers.”

dx Yy GreaterEq(x, v)))
A ——e S ——

X

B WN

“Every number has a number greater than or equal to it.”

Yy dx GreaterEq(x, y)))

Y
2 3 4
TIHe | F | F
—
T T F F
Tl\T LJE
T T

Quantifier Order Can Matter

Domain of Discourse

Predicate Definitions

t1,2,3,4) GreaterEq(x, y) ::= “x 2y” |

2 3 4
‘ i . TIF|F|F

There is a number greater than or equal to all numbers.)
2| T T FLF

X
dx Vy GreaterEq(X,@) <] I | K

\

“Every number has a number greater than or equal to it.” [—4 v T

Yy dx GreaterEq(x, y)))

The purple statement requires an entire row to be true.
The red statement requires one entry in each column to be true.

s

.

Important: both include the case x =y

Different names does not imply different objects!

~

J

12 34
n] n n] 1 T F F F
Quantification with Two Variables JuEnr
expression when true when false
Vx YV y P(X y) Every pair is true. At least one pair is false.
i ’ — = S

il

:‘:m & P(N\))
dx vy P(x, yf

.. g
At least one pair is true.

MEs———

All pairs are false.

Ej\’—/—’]x VUO \/)

Vx3dyP(x,y)

We can find a specific y for
each x.
(X]_I y'lTl (XZI y2)l (X3I y3)

. | T [\

Some x doesn’t have a
corresponding y.

“—'s——-——-'
Jy Vz’(x, y)

o ——

We c‘an find bNE y that
works no matter what x is.

(X1, ¥), (X5, ¥), (X3,)

For any candidate y, there is
an x that it doesn’t work for.

Logical Inference

e So far we’ve considered:

— How to understand and express things using
propositional and predicate logic

— How to compute using Boolean (propositional) logic

— How to show that different ways of expressing or
computing them are equivalent to each other

* Logic also has methods that let us infer implied
properties from ones that we know

— Equivalence is a small part of this

New Perspective

Rather than comparing A and B as columns,
zoom in on just the rows where A is true:

>

q B

— |-

p
-
"

-n—l‘-n—|

M | ™

New Perspective

Rather than comparing A and B as columns,
zoom in on just the rows where A is true:

>

q B

T
T

— |-

M | ™

p
T
F

-n—l‘-n—|

Given that A is true, we see that B is also true.

A=0B

New Perspective

Rather than comparing A and B as columns,
zoom in on just the rows where A is true:

plqgq| A | B

T T T T
T F T T

Fl T F

Ao

When we zoom out, what have we proven?

J |V

New Perspective

Rather than comparing A and B as columns,
zoom in on just the rows where B is true:

—B
| 71

T

20T
&S

When we zoom out, what have we proven?

j—|'—| >
,—|‘—| o

a4
M| Al n | 4 [KR

_n
| -

(A—>B)=T

New Perspective

Equivalences

A=B and (A < B)=T are the same
,

Inference
A = B and (A — B) =T are the same

Can do the inference by [zooming in]
to the rows where A is true

Applications of Logical Inference

Software Engineering

— Express desired properties of program as set of logical
constraints

— Use inference rules to show that program implies that
those constraints are satisfied

e Artificial Intelligence

— Automated reasoning

Algorithm design and analysis

— e.8., Correctness, Loop invariants.

Logic Programming, e.g. Prolog

— Express desired outcome as set of constraints

— Automatically apply logic inference to derive solution

Proofs

e Start with given facts (hypotheses)
* Use rules of inference to extend set of facts
 Result is proved when it is included In the set

An inference rule: Modus Ponens

If Aand A — B are both true, then B must be true

Write thisruleas A:A—B

e Given:
— If it is Friday, then you have a 311 class today.
— It is Friday.

Therefore, by Modus Ponens:
— You have a 311 class today.

My First Proof!

Show that r follows fromp,p > q,and g —>r —

p Given
p —>q Given
q—1r Given
% M. I~ \,’2—
- M. P fne 3

kbR

/Mc:dus Ponens ;A : A:%
- B &

My First Proof!

Show that r follows from p,p —> q,and g — r

1. p Given
2. p —>q Given
3. q—r Given
4. q MP: 1,2
5. r MP: 3, 4

Modus Ponens

A;A—>B
s B

Proofs can use equivalences too

Show that —p follows from p — q and —

1. p—>q Given -

C2. —q Given \\!
3. —q—o>—p Contrapositive: 1 =
J MP: 2, 3

A;A—>B
s B

Modus Ponens

Inference Rules

If A is true and B is true

Requirements: A : B
Conclusions: .. C , D
Then, C must Then D must
be true be true

Example (Modus Ponens):

A; A—>B If | have A and A — B both true,
B Then B must be true.

Axioms: Special inference rules

If | have nothing...

Requirements:

Conclusions: .. C , D

Then, C must Then D must
be true be true

Example (Excluded Middle):

A v—A must be true.

s A v—A

Simple Propositional Inference Rules

Two inference rules per binary connective,
ohe to eliminate it and one to introduce it

AANB
~A B

Elim A

AXB;_IA

Elim Vv

prm—

A:A—>B

\\. _

Modus Ponens

Intro A 'A : a‘ e._
~AAB
A
Intro V
~AvB BVA
A—B

Direct Proof

“"A—B
Not ffke otﬁer rules

