
CSE 311: Foundations of Computing

Lecture 7:  Propositional & Predicate Logic Proofs



Last class: My First Proof!

Show that r follows from p, p → q, and q → r

1.  � Given

2. � → � Given

3. � � � Given

4. � MP: 1, 2

5. � MP: 3, 4

Modus Ponens



1. � → � Given

2. �� Given

3. �� � �� Contrapositive: 1

4. �� MP: 2, 3

Last class: Proofs can use equivalences too

Show that ¬p follows from p → q and ¬q

Modus Ponens



Last class: Propositional Inference Rules

Two inference rules per binary connective, one to eliminate 

it and one to introduce it

A ∧ B

∴ A, B

A ; B   

∴ A ∧ B 

A              x

∴ A ∨ B, B ∨ A

A ; A → B

∴ B

A  B  

∴ A → B

Elim ∧ Intro  ∧

A ∨ B ; ¬A

∴ B
Elim ∨ Intro  ∨

Modus Ponens Direct Proof



Proofs

Show that r follows from p, p → q and (p ∧ q) → r

A ; A → B

∴ B

How To Start:

We have givens, find the ones that go 

together and use them.  Now, treat new

things as givens, and repeat.

A ∧ B

∴ A, B

A ; B   

∴ A ∧ B 



Proofs

Show that r follows from p, p → q and (p ∧ q) → r

A ; A → B

∴ B

A ∧ B

∴ A, B

A ; B   

∴ A ∧ B 

1. � Given

2. � → � Given

3. (� ∧ �) → � Given

9. � ??



Proofs

Show that � follows from �, � → �, and (� ∧ �) → �

1. � Given

2. � → � Given

3. � MP: 1, 2

4. � ∧ � Intro ∧: 1, 3

5. (� ∧ �) → � Given

6. � MP: 4, 5

�� ;

� ∧ �    ; (� ∧ �) → �

�

MP

Intro ∧

MP

Two visuals of the same proof.

We will use the top one, but if 

the bottom one helps you 

think about it, that’s great!

�  ;   � → �



Prove that ¬r follows from p ∧ s, q → ¬r, and ¬s ∨ q.

Proofs

1. � ∧ 
 Given

2. � → �� Given

3. �
 ∨ � Given

20. �� Idea: Work backwards!

First: Write down givens 

and goal



Prove that ¬r follows from p ∧ s, q → ¬r, and ¬s ∨ q.

Proofs

1. � ∧ 
 Given

2. � → �� Given

3. �
 ∨ � Given

20. �� MP: 2,

Idea: Work backwards!

We want to eventually get ��.  How?

• We can use � → �� to get there.

• The justification between 2 and 20 

looks like “elim →” which is MP.



Prove that ¬r follows from p ∧ s, q → ¬r, and ¬s ∨ q.

Proofs

1. � ∧ 
 Given

2. � → �� Given

3. �
 ∨ � Given

19. �

20. �� MP: 2, 19

Idea: Work backwards!

We want to eventually get ��.  How?

• Now, we have a new “hole”

• We need to prove �…

• Notice that at this point, if we 

prove �, we’ve proven ��…



Prove that ¬r follows from p ∧ s, q → ¬r, and ¬s ∨ q.

Proofs

1. � ∧ 
 Given

2. � → �� Given

3. �
 ∨ � Given

19. �

20. �� MP: 2, 19

This looks like or-elimination.



Prove that ¬r follows from p ∧ s, q → ¬r, and ¬s ∨ q.

Proofs

1. � ∧ 
 Given

2. � → �� Given

3. �
 ∨ � Given

18. ��


19. � ∨ Elim: 3, 18

20. �� MP: 2, 19

��
 doesn’t show up in the givens but


 does and we can use equivalences



Prove that ¬r follows from p ∧ s, q → ¬r, and ¬s ∨ q.

Proofs

1. � ∧ 
 Given

2. � → �� Given

3. �
 ∨ � Given

17. 


18. ��
 Double Negation: 17

19. � ∨ Elim: 3, 18

20. �� MP: 2, 19 



Prove that ¬r follows from p ∧ s, q → ¬r, and ¬s ∨ q.

Proofs

1. � ∧ 
 Given

2. � → �� Given

3. �
 ∨ � Given

17. 
 ∧ Elim: 1

18. ��
 Double Negation: 17

19. � ∨ Elim: 3, 18

20. �� MP: 2, 19 

No holes left!  We just 

need to clean up a bit.



Prove that ¬r follows from p ∧ s, q → ¬r, and ¬s ∨ q.

Proofs

1. � ∧ 
 Given

2. � → �� Given

3. �
 ∨ � Given

4. 
 ∧ Elim: 1

5. ��
 Double Negation: 4

6. � ∨ Elim: 3, 5

7. �� MP: 2, 6 



• You can use equivalences to make substitutions

of any sub-formula.

e.g.  �� �  � � ≡ �� � �  � �

• Inference rules only can be applied to whole 

formulas (not correct otherwise).

e.g. 1.  � → � given

2.  (� � �) � � intro ∨ from 1.

Important: Applications of Inference Rules

Does not follow! e.g . p=F, q=T, r=F



Last class: Propositional Inference Rules

Two inference rules per binary connective, one to eliminate 

it and one to introduce it

A ∧ B

∴ A, B

A ; B   

∴ A ∧ B 

A              x

∴ A ∨ B, B ∨ A

A ; A → B

∴ B

A  B  

∴ A → B

Not like other rules

Elim ∧ Intro  ∧

A ∨ B ; ¬A

∴ B
Elim ∨ Intro  ∨

Modus Ponens Direct Proof



Last class: New Perspective

Rather than comparing A and B as columns,

zooming in on just the rows where A is true:

Given that A is true, we see that B is also true. 

p q A B

T T T T

T F T T

F T F

F F F

A B



Last class: New Perspective

Rather than comparing A and B as columns,

zooming in on just the rows where B is true:

When we zoom out, what have we proven?

p q A B A → B

T T T T T

T F T T T

F T F T T

F F F F T

(A → B) ≡ T



To Prove An Implication: � → �

• We use the direct proof rule

• The “pre-requisite” A  B for the direct proof rule 

is a proof that “Given A, we can prove B.”

• The direct proof rule:

If you have such a proof then you can conclude        

that A → B is true

A  B  

∴ A → B



Proofs using the direct proof rule

Show that p → r follows from q and (p ∧ q) → r

1.   � Given

2. (� � �) � � Given

3.1. � Assumption

3.2.   

3.3.   � ??

3.    � → � Direct Proof

This is a 

proof

of � → �

If we know � is true…

Then, we’ve shown     

r is true



Proofs using the direct proof rule

Show that p → r follows from q and (p ∧ q) → r

1.   � Given

2. (� � �) � � Given

3.1. � Assumption

3.2.   � � � Intro ∧: 1, 3.1

3.3.   � MP: 2, 3.2

3.    � → � Direct Proof



Prove:  (p ∧ q) → (p ∨ q)

Example

There MUST be an application of the

Direct Proof Rule (or an equivalence)

to prove this implication.

Where do we start?  We have no givens…



Example

Prove:  (p ∧ q) → (p ∨ q)

1.1. � � � Assumption

1.9.   � � � ??

1. (� ∧ �) � (� � �) Direct Proof



Example

Prove:  (p ∧ q) → (p ∨ q)

1.1. � � � Assumption

1.2.   � Elim ∧: 1.1

1.3.   � � � Intro ∨: 1.2

1. (� ∧ �) � (� � �) Direct Proof



One General Proof Strategy

1. Look at the rules for introducing connectives to 

see how you would build up the formula you want 

to prove from pieces of what is given

2. Use the rules for eliminating connectives to break 

down the given formulas so that you get the 

pieces you need to do 1.

3. Write the proof beginning with what you figured 

out for 2 followed by 1.



Example

Prove:    ((p → q) ∧ (q → r)) → (p → r)



Example

Prove:    ((p → q) ∧ (q → r)) → (p → r)

1.1. � → � ∧ (� → �) Assumption

1. � → � ∧ � → � → (� → �) Direct Proof

1.? � → �



Example

Prove:    ((p → q) ∧ (q → r)) → (p → r)

1.1. � → � ∧ (� → �) Assumption

1.2. � → � ∧ Elim: 1.1

1.3. � → � ∧ Elim: 1.1

1. � → � ∧ � → � → (� → �) Direct Proof

1.? � → �



Example

Prove:    ((p → q) ∧ (q → r)) → (p → r)

1.1. � → � ∧ (� → �) Assumption

1.2. � → � ∧ Elim: 1.1

1.3. � → � ∧ Elim: 1.1

1.4.1. � Assumption

1.4.? �

1.4. � → � Direct Proof

1. � → � ∧ � → � → (� → �) Direct Proof



Example

Prove:    ((p → q) ∧ (q → r)) → (p → r)

1.1. � → � ∧ (� → �) Assumption

1.2. � → � ∧ Elim: 1.1

1.3. � → � ∧ Elim: 1.1

1.4.1. � Assumption

1.4.2. � MP: 1.2, 1.4.1

1.4.3. � MP: 1.3, 1.4.2

1.4. � → � Direct Proof

1. � → � ∧ � → � → (� → �) Direct Proof



Inference Rules for Quantifiers: First look

** By special, we mean that c is a 

name for a value where P(c) is true. 

We can’t use anything else about that 

value, so c has to be a NEW name!

∀x P(x)        
∴ P(a)  (for any a)

P(c) for some c

∴ ∃x P(x)
Intro ∃ Elim ∀

Intro ∀
∃x P(x)

∴ P(c) for some special** c

Elim ∃



My First Predicate Logic Proof

Prove ∀x P(x) → ∃x P(x)

5. �� � � � �� � �  

The main connective is implication

so Direct Proof seems good 

Integers

Domain of Discourse



My First Predicate Logic Proof

Prove ∀x P(x)) → ∃x P(x)

1. �� � � � �� � �  Direct Proof

1.1. �� � � Assumption

1.5. �� � �

We need an ∃ we don’t have 

so “intro ∃” rule makes sense

Integers

Domain of Discourse



My First Predicate Logic Proof

Prove ∀x P(x) → ∃x P(x)

1. �� � � � �� � �  Direct Proof

1.1. �� � � Assumption

1.5. �� � � Intro ∃:

We need an ∃ we don’t have 

so “intro ∃” rule makes sense 

That requires P(c) 

for some c.  

Integers

Domain of Discourse



My First Predicate Logic Proof

Prove ∀x P(x) → ∃x P(x)

1. �� � � � �� � � Direct Proof

1.1. �� � � Assumption

1.4. �(�


1.5. �� � � Intro ∃: 1.4

Integers

Domain of Discourse



My First Predicate Logic Proof

Prove ∀x P(x) → ∃x P(x)

1. �� � � � �� � � Direct Proof

1.1. �� � � Assumption

1.4. �(�
 Elim ∀: 1.1

1.5. �� � � Intro ∃: 1.4

Integers

Domain of Discourse



My First Predicate Logic Proof

Prove ∀x P(x) → ∃x P(x)

1. �� � � � �� � � Direct Proof

1.1. �� � � Assumption

1.2. �(�
 Elim ∀: 1.1

1.3. �� � � Intro ∃: 1.2

Working forwards as well as backwards: 

In applying “Intro ∃” rule we didn’t know what expression

we might be able to prove P(c) for, so we worked forwards

to figure out what might work.



Predicate Logic Proofs

• Can use

– Predicate logic inference rules

whole formulas only

– Predicate logic equivalences (De Morgan’s)

even on subformulas

– Propositional logic inference rules

whole formulas only

– Propositional logic equivalences

even on subformulas



Predicate Logic Proofs with more content

• In propositional logic we could just write down 

other propositional logic statements as “givens”

• Here, we also want to be able to use domain 

knowledge so proofs are about something specific

• Example:

• Given the basic properties of arithmetic on integers, 

define:

Even(x) := ∃y (x = 2⋅y)

Odd(x) := ∃y (x = 2⋅y + 1)

Predicate Definitions

Integers

Domain of Discourse



A Not so Odd Example

Even(x) := ∃y (x = 2⋅y)

Odd(x) := ∃y (x = 2⋅y + 1)

Predicate Definitions

Integers

Domain of Discourse

Formally: prove  ∃x Even(x)

Prove  “There is an even number”



A Not so Odd Example

Even(x) := ∃y (x = 2⋅y)

Odd(x) := ∃y (x = 2⋅y + 1)

Predicate Definitions

Integers

Domain of Discourse

Formally: prove  ∃x Even(x)

Prove  “There is an even number”

1. 2 = 2⋅1 Algebra

2. ∃y (2 = 2⋅y) Intro ∃: 1

3. Even(2) Definition of Even: 2

4. �x Even(x) Intro ∃: 3



A Prime Example

Even(x) := ∃y (x = 2⋅y)

Odd(x) := ∃y (x = 2⋅y + 1)

Prime(x) := “x > 1 and x≠a⋅b for 

all integers a, b with 1<a<x”

Predicate Definitions

Integers

Domain of Discourse

Prove  “There is an even prime number”

Formally: prove  ∃x (Even(x) ∧ Prime(x))



A Prime Example

Even(x) := ∃y (x = 2⋅y)

Odd(x) := ∃y (x = 2⋅y + 1)

Prime(x) := “x > 1 and x≠a⋅b for 

all integers a, b with 1<a<x”

Predicate Definitions

Integers

Domain of Discourse

1. 2 = 2⋅1 Algebra

2. ∃y (2 = 2⋅y) Intro ∃: 1

3. Even(2) Def of Even: 3

4. Prime(2) Property of integers

5. Even(2) ∧ Prime(2) Intro ∧: 2, 4

6. ∃x (Even(x) ∧ Prime(x)) Intro ∃: 5

Prove  “There is an even prime number”

Formally: prove  ∃x (Even(x) ∧ Prime(x))

* Later we will further break down “Prime” using quantifiers to prove statements like this

*



Inference Rules for Quantifiers: First look

* in the domain of P 
** By special, we mean that c is a 

name for a value where P(c) is true. 

We can’t use anything else about that 

value, so c has to be a NEW name!

∀x P(x)        
∴ P(a)  (for any a)

“Let a be arbitrary*”...P(a)

∴ ∀x P(x)

P(c) for some c

∴ ∃x P(x)
Intro ∃ Elim ∀

Intro ∀
∃x P(x)

∴ P(c) for some special** c

Elim ∃



Even and Odd

Prove: “The square of any even number is even.”

Formal proof of:  ∀x (Even(x) → Even(x2))

Even(x) := ∃y  (x=2y)     

Odd(x)  := ∃y  (x=2y+1)

Domain: Integers 

3.   ∀x (Even(x)→Even(x2))



Even and Odd

Prove: “The square of any even number is even.”

Formal proof of:  ∀x (Even(x) → Even(x2))

1. Let a be an arbitrary integer

2.   Even(a)→Even(a2)

3.   ∀x (Even(x)→Even(x2))         Intro ∀: 1,2

Even(x) := ∃y  (x=2y)     

Odd(x)  := ∃y  (x=2y+1)

Domain: Integers 



Even and Odd

Prove: “The square of any even number is even.”

Formal proof of:  ∀x (Even(x) → Even(x2))

1. Let a be an arbitrary integer

2.1   Even(a) Assumption

 

2.6  Even(a2)

2.   Even(a)→Even(a2) Direct proof

3.   ∀x (Even(x)→Even(x2))         Intro ∀: 1,2

Even(x) := ∃y  (x=2y)     

Odd(x)  := ∃y  (x=2y+1)

Domain: Integers 



Even and Odd

Prove: “The square of any even number is even.”

Formal proof of:  ∀x (Even(x) → Even(x2))

1. Let a be an arbitrary integer

2.1   Even(a) Assumption

2.2 ∃y (a = 2y) Definition of Even

2.5   ∃y (a2 = 2y)

2.6  Even(a2) Definition of Even

2.   Even(a)→Even(a2) Direct Proof

3.   ∀x (Even(x)→Even(x2))         Intro ∀: 1,2

Even(x) := ∃y  (x=2y)     

Odd(x)  := ∃y  (x=2y+1)

Domain: Integers 



Even and Odd

Prove: “The square of any even number is even.”

Formal proof of:  ∀x (Even(x) → Even(x2))

1. Let a be an arbitrary integer

2.1   Even(a) Assumption

2.2 ∃y (a = 2y) Definition of Even

2.5   ∃y (a2 = 2y) Intro ∃: 

2.6  Even(a2) Definition of Even

2.   Even(a)→Even(a2) Direct proof

3.   ∀x (Even(x)→Even(x2))         Intro ∀: 1,2

Need a2 = 2c

for some c

Even(x) := ∃y  (x=2y)     

Odd(x)  := ∃y  (x=2y+1)

Domain: Integers 



Even and Odd

Prove: “The square of any even number is even.”

Formal proof of:  ∀x (Even(x) → Even(x2))

1. Let a be an arbitrary integer

2.1   Even(a) Assumption

2.2 ∃y (a = 2y) Definition of Even

2.3   a = 2b Elim ∃: b

2.5   ∃y (a2 = 2y) Intro ∃: 

2.6  Even(a2) Definition of Even

2.   Even(a)→Even(a2) Direct proof

3.   ∀x (Even(x)→Even(x2))         Intro ∀: 1,2

Need a2 = 2c

for some c

Even(x) := ∃y  (x=2y)     

Odd(x)  := ∃y  (x=2y+1)

Domain: Integers 



Even and Odd

Prove: “The square of any even number is even.”

Formal proof of:  ∀x (Even(x) → Even(x2))

1. Let a be an arbitrary integer

2.1   Even(a) Assumption

2.2 ∃y (a = 2y) Definition of Even

2.3   a = 2b Elim ∃: b

2.4   a2 = 4b2 = 2(2b2)     Algebra

2.5   ∃y (a2 = 2y) Intro ∃

2.6  Even(a2) Definition of Even

2.   Even(a)→Even(a2) Direct Proof

3.   ∀x (Even(x)→Even(x2))         Intro ∀: 1,2

Used a2 = 2c for c=2b2

Even(x) := ∃y  (x=2y)     

Odd(x)  := ∃y  (x=2y+1)

Domain: Integers 



These rules need more caveats…

There are extra conditions on using these rules:

Over integer domain: ∀x ∃y (y ≥ x) is True but ∃y∀x (y ≥ x) is False

1. ∀x ∃y (y ≥ x) Given

2. Let a be an arbitrary integer

3. ∃y (y ≥ a) Elim ∀: 1

4. b ≥ a Elim ∃: b

5. ∀x (b ≥ x)                 Intro ∀: 2,4

6. ∃y∀x (y ≥ x)             Intro ∃ : 5

BAD “PROOF”



These rules need more caveats…

There are extra conditions on using these rules:

Over integer domain: ∀x ∃y (y ≥ x) is True but ∃y∀x (y ≥ x) is False

1. ∀x ∃y (y ≥ x) Given

2. Let a be an arbitrary integer

3. ∃y (y ≥ a) Elim ∀: 1

4. b ≥ a Elim ∃: b

5. ∀x (b ≥ x)                 Intro ∀: 2,4

6. ∃y∀x (y ≥ x)             Intro ∃ : 5

BAD “PROOF”

Can’t get rid of a since another name in the same line, b, depends on it!



These rules need more caveats…

There are extra conditions on using these rules:

Over integer domain: ∀x ∃y (y ≥ x) is True but ∃y∀x (y ≥ x) is False

1. ∀x ∃y (y ≥ x) Given

2. Let a be an arbitrary integer

3. ∃y (y ≥ a) Elim ∀: 1

4. b ≥ a Elim ∃: b special depends on a

5. ∀x (b ≥ x)                 Intro ∀: 2,4

6. ∃y∀x (y ≥ x)             Intro ∃ : 5

BAD “PROOF”

Can’t get rid of a since another name in the same line, b, depends on it!



Inference Rules for Quantifiers: Full version

∀x P(x)        
∴ P(a) for any a

P(c) for some c

∴ ∃x P(x)
Intro ∃ Elim ∀

* in the domain of P.  No other   

name in P depends on a 

** c is a NEW name. 

List all dependencies for c.

“Let a be arbitrary*”...P(a)

∴ ∀x P(x)
Intro ∀

∃x P(x)
∴ P(c) for some special** c

Elim ∃



English Proofs

• We often write proofs in English rather than 

as fully formal proofs

– They are more natural to read

• English proofs follow the structure of the 

corresponding formal proofs

– Formal proof methods help to understand how 

proofs really work in English...

... and give clues for how to produce them.


