CSE 311: Foundations of Computing

Lecture 7: Propositional & Predicate Logic Proofs
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Last class: My First Proof!

Show that r follows from p,p —> q,and g — r

1. p Given
21. p —>q Given
3. qg—r Given
4. <P MP: 1, 2
5. T MP: 3, 4

—

Modus Ponens ,AL,ALB
s B



Last class: Proofs can use equivalences too

Show that —p follows from p — q and —q

1. p—>q Given

2. —q Given

3. —q—>-—p Contrapositive: 1|
4.  —p MP: 2, 3

A:A—B
s B

Modus Ponens




Last class: Propositional Inference Rules

Two inference rules per binary connective, one to eliminate
it and one to introduce it

Elim A AAB A:B
il Intro A
~ A B ~AAB
Elim Vv AvB : —A Intro Vv A
°.B '.'A\/B,B\/A
Modus Ponens A : A—B Direct Proof A=B
*~ B S~ A—B

\



Proofs

Show that r follows from p,p > qand (p Aq) —r

How To Start: A-A—SB
We have givens, find the ones that go 2 ~
together and use them. Now, treat new - B
things as givens, and repeat.

AANB
~ A, B
A:B

~AAB



Proofs

Show that r follows fromp, p > qand((p Aq) —>r

Cl. p Given A;A:B
2. p—oq Given R
3. (pANqg)—>T Giverl A AB
L\, ﬁ/ meo “(,2 A, B

S- pag, ’i&/\dw/\‘.\’cf
A;B
@r_ %Mp:{,; ~AAB




Proofs

Show that r follows fromp,p - g,and (p Aq) - r

1. p Given
Two visuals of the same proof. 2. p—q Given
We will use the top one, butif 3. g MP: 1, 2
the bottom one helps you Intro A: 1. 3
think about it, that’s great! 4. phq T
5. (pAq) > r Given
: 6. 1 MP: 4,5
) _) ’
P, DP—q MP Ju—
IQ’—IntrO(/\ A )
N ; —>7T
pAq pNq MP

r



Proofs

Prove that —r follows from p A's, g — —r, and —s v q.

\ ———

1. pAs Given First: Write down givens
q— —r Given and goal

e

3. -—sVq Given

N

1q 4, @
20. —r @ MY - 7_,\4 Idea: Work backwards!




Proofs

Prove that —r follows from p A's, g — —r, and —s v q.

1. pAs Given

N

q— —r  Given

Idea: Work backwards!

3. -—sVq Given

We want to eventually get —r. How?

 We can use q — —r to get there.
* The justification between 2 and 20
looks like “elim —” which is MP.

20. —r MP: 2. @



Proofs

Prove that —r follows from p A's, g — —r, and —s v q.

N

19.
20.

PAS
q— r
SV q

—r

Given
Given
Given

@,

MP: 2, 19

Idea: Work backwards!

We want to eventually get —r. How?
* Now, we have a new “hole”
* We need to prove q...
* Notice that at this point, if we
prove q, we've proven —r...



Proofs

Prove that —r follows from p A's, g — —r, and —s v q.

1. pAs Given

N

q —» —r  Given

3. —sVgq Given

This looks like o&-elim‘i‘r,lation.
r7
VoS
(K' S ? EIimV®VB;@
19. q ElwV 2,1£ ~ B,
20. —r MP: 2, 19 v




Proofs

Prove that —r follows from p A's, g — —r, and —s v q.

N

\ 2.
18.
19.
20.

PAS
—
q— r

SV q

S

/1S
—_—

q
—r

Given
Given
Given

——§ doesn’t show up in the givens but

&>
@ S ﬁ doﬁ/esigg we 93:1 use equivalences
V Elim: 3, 18

MP: 2, 19



Proofs

Prove that —r follows from p A's, g — —r, and —s v q.

1@ Given

2. q - —r Given

3. -sVgq Given

7. s R Elw A: 1

18. ——s Double Negation: 17
19. ¢q V Elim: 3, 18
20. —r MP: 2, 19



Proofs

Prove that —r follows from p A's, g — —r, and —s v q.

PA\S Given No holes left! We just

2 q— —r Given need to clean up a bit.

3. -—sVq Given

17. s A Elim: 1
18. ——s Double Negation: 17
19. ¢q V Elim: 3, 18

20. —r MP: 2, 19



Proofs

Prove that —r follows fromp A's, g — —r, and —s v q.

PAS Given

qg —» —r  Given

sV q Given

S A Elim: 1

——S Double Negation: 4
q V Elim: 3,5

N O kbR

—r MP: 2, 6



Important: Applications of Inference Rules

* You can use equivalences to make substitutions
of any sub-formula.

eg (p>r)vg=(—pvr)vg

* Inference rules only can be applied to whole
formulas (nhot correct otherwise).

e.g. E. p-oT given
2. (p v QI =r——mtrg v from 1.

Does not follow! e.g. p=F, q=T, r=F




Last class: Propositional Inference Rules

Two inference rules per binary connective, one to eliminate
it and one to introduce it

Elim A AnB A , B
'm Intro A
o A) B o A N\ B
Elim Vv A v B : _IA Intro V A
. B ~AvVvB BVA
Modus Ponens A ; A — B Direct Proof

Not like other rules



Last class: New Perspective

Rather than comparing A and B as columns,
zooming in on just the rows where A is true:

>

q B

T
T

— |-

M | ™

p
T
F

-n—l‘-n—|

Given that A is true, we see that B is also true.

A ®B



Last class: New Perspective

Rather than comparing A and B as columns,
zooming in on just the rows where B is true:

A—B

||| D>
L B B B I s B [ )

| a4
||| 4R

7 |
— ||| =]]

\L .
When we zoom out, what have we proven?

(A—>B)=T



To Prove An Implication: A - B

A=B
* We use the direct proof rule ~A—=B

 The “pre-requisite” A = B for the direct proof rule

is a proof that™Given A, we can prove B.”

 The direct proof rule:

If you have such a proof then you can conclude
that A — B is true



Proofs using the direct proof rule

Show that p — r follows fromqand (pAq) —>r

—_———— —

1. g Given —
2. (pAqg) —>1r Given P

Thisisa [3-1. p Assumption g—\lf we know p is true...
proof 3.9 Tade A L 2.1 Then, we've shown
ofp - r PACi/ A ’ r is true

3.3. r ?7? MP: 2,%)>
C3§fr\ > Direct Proof




Proofs using the direct proof rule

Show that p — r follows fromgqand (pAq) —>r

1. g Given

2. (prq)—>1r Given
31. p Assumption
3.2. pArqg Intron: 1,31
33. r MP: 2, 3.2

3. por Direct Proof



Example

Prove: (@)e) (pVQq)
g T A

There MUST be an application of the
Direct Proq\RuIe r.a{'l ‘equivalence)

(

\. L to prove this implication.

Where do we start? We have no givens...

G fvy T Ve N
(- (gagq) = (WV‘L) Vo] (oot




Example

Prove: (pAq) > (p Vv Q)

1.1. prgq Assumption

1.9. pvg ??
1. (pNq)—> (pVvq) Direct Proof



Example

Prove: (pAq) > (p Vv Q)

1.1. prgq Assumption
1.2. p Elim A: 1.1
1.3. pvg Intro v: 1.2

1. (pbNq)—>(pVvq) Direct Proof



One General Proof Strategy ) (ed wrhy ;m,]

4

1. Look at the rules for introducing connectives to
see how you would build up the formula you want
to prove from pieces of what is given

2. Use the rules for eliminating connectives to break
down the given formulas so that you get the
pieces you heed to do 1.

3. Write the proof beginning with what you figured
out for 2 followed by 1.



Example m]\L+ ek

o/
Prove: ((p—>a)A(g—>1r)—>(p—1)



Example

Prove: ((p—>a)A(g—>1r)—>(p—1)

1.1. (p » q) N (q — 1r) Assumption
R

\’]

y

1?2 p-or Mot (el
1. ((p > qg)N(q - r)) — (p —» r) Direct Proof



Example

Prove: ((p—>a)A(g—>1r)—>(p—1)

1.1. (p » q) N (q — 1r) Assumption
1.2. p—q A Elim: 1.1
1.3. g—r A Elim: 1.1

¢

~
12 p=1 Pad (hk

1. ((p > qg)N(q - r)) — (p —» r) Direct Proof



Example

Prove: ((p—>a)A(g—>1r)—>(p—1)

1.1. (p » q) N (q — 1r) Assumption

1.2. p—-q A Elim: 1.1
1.3. g-r A Elim: 1.1
141. p Assumption

. 4.2 q @ WY .,
142 r M- 13 )
1.4. p-or Direct Proof

1. ((p > qg)N(q - r)) — (p —» r) Direct Proof



Example

Prove: ((p—>a)A(g—>1r)—>(p—1)

1.1. (p » q) N (q — 1r) Assumption

1.2. p—q A Elim: 1.1

1.3. g—r A Elim: 1.1
141. p Assumption
1.4.2. gq MP:1.2,1.4.1¢
1.43. r MP: 1.3,1.4.2

1.4. p-or Direct Proof

1. ((p - q)AN(q- r)) — (p —» r) Direct Proof



Inference Rules for Quantifiers: First look

Intro 3 P(C) fOr >0me € Elim YV \le P(X)
x P(X) P(a) (for any a)
Elim 3 x P(X) Intro V

= P(c) for some special** c

** By special, we mean thatcis a
name for a value where P(c) is true.
We can’t use anything else about that
value, so c has to be a NEW name!




Domain of Discourse

My First Predicate Logic Proof ___Integers

P(c) for some c
Intro 4

Prove(Vx P(x))eﬁx P(x) ) NN

Elim V VX P(X)

\G[\ p(.‘@] ~ P(a) for any a

2w ((x)
The main connective is implication

5. Vx P(x)— 3x P(x) @ S0 ;ﬂ ect P’VOWS good




Domain of Disequrse
My First Predicate Logic Proof __ Integers ) |

P(c) for some c
Intro 4

Prove Vx P(x)) — dx P(x) “ 3xP(x)
Vx P(x)
~. P(a) for any a

Elim V

1.1. VxP(x) Assumption

We need an d we don’t have
so “intro 4” rule makes sense

15. %P @)

1. Vx P(x)—» dx P(x) Direct Proof



Domain of Discourse

My First Predicate Logic Proof ___Integers
— P(c) for some c
Prove Vx P(x) — 3x P(x) “ 3P
Vx P(x)

Elim V

~. P(a) for any a

1.1. VxP(x) Assumption

We need an d we don’t have
so “intro 4” rule makes sense

That requires P
15 3xP() It MUeesPO
1. Vx P(x)— dx P(x) Direct Proof




Domain of Discourse

My First Predicate Logic Proof ___Integers
— P(c) for some c
Prove Vx P(x) — 3x P(x) “ 3P
1.1. VxP(x) Assumption
o ./ b'
1.4. P(5) @ Elinn 1= o]
1.5. dxP(x) Intro 3: 1.4

1. Vx P(x)- dx P(x) Direct Proof




Domain of Discourse

My First Predicate Logic Proof ___Integers
— P(c) for some c
Prove Vx P(x) — 3x P(x) “ 3P
1.1. VxP(x) Assumption
1.4. P(5) Elim V: 1.1
1.5. dxP(x) Intro 3: 1.4

1. Vx P(x)- dx P(x) Direct Proof




P(c) for some c

My First Predicate Logic Proof T 3P
Elim V VX P(X)
Prove Vx P(x) — 3x P(x) * Plaforany:
1.1. VxP(x) Assumption
1.2. P(5) Elim V: 1.1
1.3. dx P(x) Intro 3: 1.2
1. Vx P(x)-» dx P(x) Direct Proof

Working forwards as well as backwards:

In applying “Intro 3”7 rule we didn’t know what expression
we might be able to prove P(c) for, so we worked forwards
to figure out what might work.




Predicate Logic Proofs

e Can use

— Predicate logic inference rules
whole formulas only

— icate logic equivalences (De n’s)
—even on subformulas

— Propositional logic inference rules

whole formulas o
—_——— =

ropositional logic equivalences
even on subformulas

«—




Predicate Logic Proofs with more content

* |n propositional logic we could just write down
other propositional logic statements as “givens”

* Here, we also want to be able to use domain
knowledge so proofs are about something specific

* Example: Domain of Discourse
Integers

* Given the basic properties of arithmetic on integers,
define:

Predicate Definitions
Even(x) :=3dy (x = 2-y)
pdd(x) =3y (x=2-y + 1))




A Not so Odd Example

Domain of Discourse| |Predicate Definitions
Integers J |Even(x) := 3y (x = 2-y)
Odd(x) :=dy (x=2'y +1)

Prove “There is an even number”
Formally: prove dx Even(x)



A Not so Odd Example

Domain of Discourse| |Predicate Definitions
Integers J |Even(x) := 3y (x = 2-y)
Odd(x) :=dy (x=2'y +1)

Prove “There is an even number”
Formally: prove dx Even(x)

1. 2=2-1 Algebra

2. dy(2=2y) Introd:1

3. Even(2) Definition of Even: 2
4, dx Even(x) Intro d: 3



A Prime Example

Domain of Discourse| [Predicate Definitions
Integers

Even(x) :=3dy (x =2-y)

Odd(x) :=3dy (x=2-y + 1)

Prime(x) := “x > 1 and x#a-b for

\_ all integers a, b with 1<a<x” /

Prove “There is an even prime number”
Formally: prove dx (Even(x) A Prime(x))



A Prime Example

Domain of Discourse| [Predicate Definitions

Integers

Even(x) :=3dy (x =2-y)

Odd(x) :=3dy (x=2-y + 1)
Prime(x) := “x > 1 and x#a-b for
\_ all integers a, b with 1<a<x” /

Prove “There is an even prime number”
Formally: prove dx (Even(x) A Prime(x))

o0k wbpE

2=21

dy (2=2-y)

Even(2)

Prime(2)*

Even(2) A Prime(2)

dx (Even(x) A Prime(x))

Algebra

Intro 3: 1

Def of Even: 3
Property of integers
Intro A: 2, 4

Intro 4: 5

* Later we will further break down “Prime” using quantifiers to prove statements like this



Inference Rules for Quantifiers: First look

P(c) for some c . Vx P(x)
Intro 3 Elim V
ax P(X) P(a) (for any a)
Elim 3 Ax P(x) | Let a be arbitrary*”...P(a)
= P(c) for some special** c Vx P(x)

*in the domain of P

** By special, we mean thatcis a
name for a value where P(c) is true.
We can’t use anything else about that
value, so c has to be a NEW name!




Even(x) := dy (x=2y)

Even and Odd Odd(x) :=3y (x=2y+1)
Domain: Integers
——-'Let a be arbitrary*”...P(a) | [Elim 3 dx P(x)
Vx P(x) =~ P(c) for some special** c

Prove: “The square of any even number is even.”
Formal proof of: Vx (Even(x) — Even(x?))

3. Vx (Even(x)—Even(x?)) @



Even(x) := dy (x=2y)

Even and Odd Odd(x) :=3y (x=2y+1)
Domain: Integers
——-'Let a be arbitrary*”...P(a) | [Elim 3 dx P(x)
Vx P(x) =~ P(c) for some special** c

Prove: “The square of any even number is even.”
Formal proof of: Vx (Even(x) — Even(x?))

1. Let a be an arbitrary integer

2. Even(a)—Even(a?) @
3. Vx (Even(x)—Even(x?)) Intro V: 1,2



Even and Odd

Even(x) := dy (x=2y)
Odd(x) :=3dy (x=2y+1)
Domain: Integers

[

[

IntroV .

Vx P(x)

Let a be arbitrary*”...P(a) | [Elim 3

dx P(x)

=~ P(c) for some special** c J

Prove: “The square of any even number is even.”
Formal proof of: Vx (Even(x) — Even(x?))

1. Let a be an arbitrary integer

2.1 Even(a)

2.6 Even(a?)
2. Even(a)—Even(a?)
3. Vx(Even(x)—Even(x?))

Assumption

O,

Direct proof

Intro V: 1,2



Even(x) := dy (x=2y)

Even and Odd Odd(x) :=3y (x=2y+1)
Domain: Integers
——-'Let a be arbitrary*”...P(a) | [Elim 3 dx P(x)
Vx P(x) =~ P(c) for some special** c

Prove: “The square of any even number is even.”
Formal proof of: Vx (Even(x) — Even(x?))

1. Let a be an arbitrary integer

2.1 Even(a) Assumption

2.2 dy(a=2y) Definition of Even

2.5 3Jy (a?=2y) @

2.6 Even(a?) Definition of Even
2. Even(a)—Even(a?) Direct Proof

3. Vx (Even(x)—Even(x?)) Intro V: 1,2



Even and Odd

Even(x) := dy (x=2y)
Odd(x) :=3y (x=2y+1)

Domain: Integers

[

[

—— | Let a be arbitrary*”...P(a) | [Elim 3

Vx P(x)

dx P(x) J

=~ P(c) for some special** c

Prove: “The square of any even number is even.”
Formal proof of: Vx (Even(x) — Even(x?))

1. Let a be an arbitrary integer

2.1 Even(a)
2.2 dy(a=2y)

2.5 3Jy (a?=2y)
2.6 Even(a?)

2. Even(a)—Even(a?)

3. Vx (Even(x)—Even(x?))

Assumption
Definition of Even

Need a2 = 2c
Intro d: @

o for some ¢
Definition of Even

Direct proof
Intro V: 1,2



Even(x) := dy (x=2y)
Even and Odd Odd(x) :=3y (x=2y+1)

Domain: Integers

—— 1 Let a be arbitrary*”...P(a) | [Elim 3 Ix P(x)
Vx P(x) =~ P(c) for some special** c

Prove: “The square of any even number is even.”
Formal proof of: Vx (Even(x) — Even(x?))

1. Let a be an arbitrary integer

2.1 Even(a) Assumption
2.2 dy(a=2y) Definition of Even
2.3 a=2b Elim3: b
2.5 3Jy (a?=2y) Intro 3: @ ::Ziriezczc
2.6 Even(a?) Definition of Even
2. Even(a)—Even(a?) Direct proof

3. Vx (Even(x)—Even(x?)) Intro V: 1,2



Even(x) := dy (x=2y)

Even and Odd Odd(x) :=3y (x=2y+1)
Domain: Integers
——-'Let a be arbitrary*”...P(a) | [Elim 3 dx P(x)
Vx P(x) =~ P(c) for some special** c

Prove: “The square of any even number is even.”
Formal proof of: Vx (Even(x) — Even(x?))

1. Let a be an arbitrary integer

2.1 Even(a) Assumption
2.2 dy(a=2y) Definition of Even
2.3 a=2b Elim3: b
2.4 a’=4b’=2(2b?) Algebra
2.5 Ty (aZ=2y) Intro 3 Used a? = 2c for c=2b?
2.6 Even(a?) Definition of Even
2. Even(a)—Even(a?) Direct Proof

3. Vx (Even(x)—Even(x?)) Intro V: 1,2



These rules need more caveats...

There are extra conditions on using these rules:

oy _Let a be arbitrary*”...P(a)  [Elim3 Ix P(x)
Vx P(x) = P(c) for some special** c
*inthe domain of P ** c has to be a NEW name.

Over integer domain: Vx dy (y = x) is True but dyVx (y = x) is False

BAD “PROOF”

1. Vx3dy(y=x) Given

2. Let a be an arbitrary integer
3. dy(y=a) Elim V: 1

4., b=>a Elimd: b

5. Vx(b=x) Intro V: 2,4
6. dyVx(y=x) Introd:5



These rules need more caveats...

There are extra conditions on using these rules:

oy LLet a be arbitrary*”...P(a)  [Elim3 Ix P(x)
Vx P(x) = P(c) for some special** c
*inthe domain of P ** c has to be a NEW name.

Over integer domain: Vx dy (y = x) is True but dyVx (y = x) is False

BAD “PROOF”

1. Vx3dy(y=x) Given

2. Let a be an arbitrary integer
3. dy(y=a) Elim V: 1
4., b=>a Elimd: b

5. Vx(b=x) Intro V: 2,4
ﬁ 6. dyVx(y=x) Introd:5

Can’t get rid of a since another name in the same line, b, depends on it!



These rules need more caveats...

There are extra conditions on using these rules:
o L Let a be arbitrary*”...P(a)  [Elim3 dx P(x)

Vx P(x = P(c) for some special** c

*in the domain of P. No other
name in P depends on a

** cisa NEW name.
List all dependencies for c.

Over integer domain: Vx dy (y = x) is True but dyVx (y = x) is False

BAD “PROOF”

1. Vx3dy(y=x) Given

2. Let a be an arbitrary integer

3. dy(y=a) Elim V: 1

4. b=>a Elim 3: b special depends on a

T VXW l:nirow
ﬁG. AyVx (y = x) Introd:5

Can’t get rid of a since another name in the same line, b, depends on it!



Inference Rules for Quantifiers: Full version

P(c) for some c . Vx P(x)
Intro 3 Elim V
Ix P(x) ~ P(a) for any a
Elim 3 X P(x) 1 Let a be arbitrary*”...P(a)
= P(c) for some special** c VX P(x)
** cisa NEW name. * in the domain of P. No other

List all dependencies for c. name in P depends on a




English Proofs

 We often write proofs in English rather than
as fully formal proofs

— They are more natural to read

* English proofs follow the structure of the
corresponding formal proofs

— Formal proof methods help to understand how
proofs really work in English...

... and give clues for how to produce them.



