CSE 311.: Foundations of Computing

Lecture 8: Predicate Logic Proofs, English Proofs
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THE AXIOM OF CHOICE AULLOWS
YoU To SELECT ONE ELEMENT
FROM EACH SET rN‘F\ COLLECTION

AND HAVE IT” EXECUTED RS
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MY MATH TEACHER WAS A BIG
BELIEVER IN PROOF BY INTIMIDATION.



Last class: Inference Rules for Quantifiers

- c) for some c — Vx P(x)
Ix P(x ~. P(a) for any a
Elim 3 3x P(X) Intro V

= P(c) for some special** c

** by special, we mean thatcis a
name for a value where P(c) is true.
We can’t use anything else about that
value, so c has to be a NEW namel.




A Not so Odd Example

Domain of Discourse| |Predicate Definitions
Integers ) |Even(x) :=3dy (x =2-y)
Odd(x) :=3dy (x=2-y +1)

—> Prove “There is an even humber”
Formally: prove dx Even(x)
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A Not so Odd Example

Domain of Discourse| |Predicate Definitions
Integers ) |Even(x) :=3dy (x =2-y)
Odd(x) :=3y (x=2-y+1)

Prove “There is an even number”
Formally: prove dx Even(x)

1. 2=21 Algebra

2. dy (2=2y) Introd:1

3. Even(2) Definition of Even: 2
4, dx Even(x) Intro 4: 3



A Prime Example

Domain of Discourse| [Predicate Definitions
Integers

Even(x) :=3dy (x = 2-y)

Odd(x) :=3dy (x=2-y + 1)

Prime(x) := “x > 1 and x#a-b for
\_ all integers a, b with 1<a<x” /

Prove “There is an even prime number”
Formally: prove dx (Even(x) A Prime(x))



A Prime Example

Domain of Discourse

Predicate Definitions

Integers

Even(x) :=3dy (x = 2-y)

ﬁime(X) — ”X >1 and Xia’b@
['K @@llintegers a, b with 1<a<x” J

T~

Prove “There is an even prime number”
Formally: prove dx (Even(x) A Prime(x))
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2=21

dy (2 =2-y)

Even(2)

Prime(2)*

Even(2) A Prime(2)

dx (Even(x) A Prime(x))

Algebra

Intro d: 1

Def of Even: 3
Property of integers
Intro A: 2, 4

Intro 4: 5

* Later we will further break down “Prime” using quantifiers to prove statements like this



Inference Rules for Quantifiers: First look

P(c) for some ¢ . Vx P(x)
Intro 3 Elim V
dx P(X) P(a) (for any a)
Elim 3 3x P(x) oy | Let a be arbitrary*”...P(a)
~ P(c) for some special** c Vx P(x)

*in the domain of P

** cisa NEW name.
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Even(x) := dy (x=2y)

Even and Odd Odd(x) :=3y (x=2y+1)
Domain: Integers
——-{'Let a be arbitrary*”...P(a) | [Elim 3 dx P(x)
Vx P(x) . P(c) for some special** c

Prove: “The square of any even number is even.”
Formal proof of: Vx (Even(x) — Even(x?))

{ 3. Vx (Even(x)—>Even(x?)) @



CEven(x):=3y (x=2y)
Even and Odd Odd(x) :=3y (x=2y+1)

Domain: Integers

Vx P(x) . P(c) for some special** c

[ —— 1 Letabe arbitrary*”..@ Elim 3 dx P(x) ]

Prove: “The square of any even number is even.”
Formal proof of: Vx (Even(x) — Even(x?))

e
1. Let a be an arbitrary integer

2. Even(a)—Even(a?) @

N

3. Vx (Even(x)—Even(x?)) Intro V: 1,2



CEven(x):=3y (x=2y)
Even and Odd Odd(x) :=3y (x=2y+1)

Domain: Integers

——-{'Let a be arbitrary*”...P(a) | [Elim 3 dx P(x)
Vx P(x) . P(c) for some special** c

Prove: “The square of any even number is even.”
Formal proof of: Vx (Even(x) — Even(x?))

1. Let a be an arbitrary integer
\N\d, 2.1 Even(a) Assumption

Q;L

'\NT 2.6 Even(a?) @

2. Even(a)—Even(a?) Direct proof
3. Vx (Even(x)—Even(x?)) Intro V: 1,2



CEven(x):=3y (x=2y)
Even and Odd Odd(x) :=3y (x=2y+1)

Domain: Integers

——-{'Let a be arbitrary*”...P(a) | [Elim 3 dx P(x)
Vx P(x) . P(c) for some special** c

Prove: “The square of any even number is even.”
Formal proof of: Vx (Even(x) — Even(x?))

1. Let a be an arbitrary integer

2.1 Even(a) Assumption

2.2 dy(a=2y) Definition of Even

2.5 3Jy (a?=2y) @

2.6 Even(a?) Definition of Even
2. Even(a)—Even(a?) Direct Proof

3. Vx (Even(x)—Even(x?)) Intro V: 1,2



Even(x) := dy (x=2y)

Even and Odd Odd(x) :=3y (x=2y+1)
Domain: Integers
——-{'Let a be arbitrary*”...P(a) | [Elim 3 dx P(x)
Vx P(x) . P(c) for some special** c

Prove: “The square of any even number is even.”
Formal proof of: Vx (Even(x) — Even(x?))

1. Let a be an arbitrary integer

2.1 Even(a) Assumption
2.2 dy(a=2y) Definition of Even
2.5 3Jy (a?=2y) Intro 3: @ E?Zi:je:czc
2.6 Even(a?) Definition of Even
2. Even(a)—Even(a?) Direct proof

3. Vx (Even(x)—Even(x?)) Intro V: 1,2



Even and Odd

Even(x) := dy (x=2y)
Odd(x) :=3y (x=2y+1)

Domain: Integers

—— | Let a be arbitrary*”...P(a) |
Vx P(x) .

Let a b n arbitrary integer

2.1 Even(a) Assumption

2.2 Ay (a = 2y) Definition of Even

2.3 a=2b Elim 3: b

2.5 Ay (a2 =2y) Intro 3:

2.6 Even(a?) Definition of Even
Even(a)—>Even(a?) Direct proof

x (Even(x)—>Even(x?)) Intro Vv: 1,2

Prove: “The square of any even number is even.”

Formal proof of: Vx (Even(x) — Even(x?)

1. Let a be an arbitrary integer

2.1 Even(a)
2.2 dy(a=2y)
2.3 a=2b

2.5 3Jy (a?=2y)
2.6 Even(a?)

2. Even(a)—Even(a?)

3. Vx (Even(x)—Even(x?))

- =(obf

| =4
Assumption
Definition of Even = 2 (Zb?)
Elim3d: b
Need a2 = 2¢c
Intro 3: @ for some c

Definition of Even
Direct proof
Intro V: 1,2



Even(x) := dy (x=2y)

Even and Odd Odd(x) :=3y (x=2y+1)
Domain: Integers
——-{'Let a be arbitrary*”...P(a) | [Elim 3 dx P(x)
Vx P(x) . P(c) for some special** c

Prove: “The square of any even number is even.”
Formal proof of: Vx (Even(x) — Even(x?))

W\ Ve
1. Let a be an arbitrary integ\er
A 2.1 Even(a) \Assumption”

2.2 dy(a=2y) Definition of Even
2.3 a=2b Elim3:b
2.4 a’=4b’=2(2b?) Algebra
2.5 Ty (aZ=2y) Intro 3 Used a2 = 2¢ for c=2b?
2.6 Even(a?) Definition of Even

2. Even(a)—Even(a?) Direct Proof

3. Vx (Even(x)—Even(x?)) Intro V: 1,2




These rules need some caveats...

There are extra conditions on using these rules:

oy LLet a be arbitrary*”...P(a)  [Elim3 dx P(x)
. P(c) for some special** c

*in the domain of P. No other ** cjsa NEW name.
name in P depends on a (List all dependencies for C. )

Without those rules, it is possible to infer claims that are false




Without the rules, one could infer false claims...

There are extra conditions on using these rules:

~—_{Let a be arbitrary*”...P(a) [Eiim3 IxP(x)
Vx P(x) = P(c) for some special** c
*in the domain of P ** c has tobe a NEW name.

Over integer domain: Vx dy (y # x) is True but JyVx (y # x) is False

BAD “PROOF”

1. Vx3dy(y #x) Given

2. Let a be an arbitrary integer

3. dyl(y+#a) Elim V: 1

4, b+#a Elim 3: 3 (b new constant)
5. Vx(b # x) Intro V: 2,4

6. dyVx(y #x) Introd:5



With the extra conditions we can Kill the bad proof...

There are extra conditions on using these rules:

v | Let a be arbitrary*”...P(a)  [Elim3 dx P(x)
. P(c) for some special** c

*in the domain of P. No other ** cisa NEW name.
name in P depends on a List all dependencies for c.

Over integer domain: Vx dy (y # x) is True but JyVx (y # x) is False
BAD “PROOF” KILLED

Intro

1. Vx3dy(y #x) Given

2. Let a be an arbitrary integer

3. dyl(y+#a) Elim V: 1

4. b+#a Elim 3: 3 (b depends on a)

B, vxibh=rx— : 2,
ﬁ 6. dyVx(y #x) Introd:5

Can’t get rid of a since another name in the same line, b, depends on it!



Inference Rules for Quantifiers: Full version

- P(c) for some ¢ — Vx P(x)
dx P(X) P(a) (for any a)
Elim 3 3x P(x) oy | Let a be arbitrary*”...P(a)
. P(c) for some special** c Vx P(x)
** cisa NEW name. * in the domain of P. No other

List all dependencies for c. name in P depends on a.




Formal Proofs

* |n principle, formal proofs are the standard for
what it means to be “proven” in mathematics
— almost all math (and theory CS) done in Predicate Logic

* But they are tedious and impractical

— e.g., applications of commutativity and associativity

— Russell & Whitehead’s formal proof that 1+1 = 2
appears after more than 100 pages of build up
— we allowed ourselves to cite “Arithmetic”, “Algebra”, etc.

* Similar situation exists in programming...



Programming

a:=ADD(1,1)

b:=MOD(a, n)

c :=ADD(arr, b)

d :=LOAD(c)

e :=ADD(arr, 1)

STORE (e, d) arr[1] = arr[(1+1) % n];

Assembly Language High-level Language



Programming vs Proofs

:=ADD(1, 1)
:=MOD(a, n)
:=ADD(arr, b)
:=LOAD(c)
:=ADD(arr, 1)
STORE (e, d)

™ © N T Q

Assembly Language
for Programs

—

Given

Given

ElimA: 1

Double Negation: 4
ElimvVv: 3,5

Modus Ponens: 2, 6
./_-

Assembly Language
for Proofs



Proofs

Given

Given

A Elim: 1 what is the “Java”
Double Negation: 4 for proofs?

V Elim: 3,5

MP: 2, 6

Assembly Language High-level Language
for Proofs for Proofs



Proofs

Given

Given

A Elim: 1

Double Negation: 4
V Elim: 3,5

MP: 2, 6

English?

Assembly Language High-level Language
for Proofs for Proofs



Proofs

Given

Given

A Elim: 1

Double Negation: 4 @
V Elim: 3,5

MP: 2, 6

Assembly Language High-level Language

for Proofs for Proofs



Proofs

 Formal proofs follow simple well-defined rules and
should be easy for a machine to check
— as assembly language is easy for a machine to execute

* English proofs correspond to those rules but are
designhed to be easier for humans to read

— also easy to check with practice
(almost all actual math and theory CS is done this way)

| English proof is correct if the reader is convinced that
they could translate it into a formal proof
(the reader is the “compiler” for English proofs)




Even(x) =3y (x=2y)
Formal Proof: Even and Odd Odd(x) =3y (x=2y+1)

Domain: Integers

Prove: “The square of every even number is even.”
Formal proof of: Vx (Even(x) — Even(x?))

1. Let a be an arbitrary integer
2.1 Even(a) Assumption

2.2 3Ty (a=2y) Definition of Even
2.3 a=2b Elim 3
2.4 a’=4b?=2(2b?) Algebra
2.5 3Jy (a?=2y) Intro
2.6 Even(a?) Definition of Even
2. Even(a)—Even(a?) Direct Proof
3. Vx (Even(x)—Even(x?)) Intro V

_—



Even(x) =3y (x=2y)
English Proof: Even and Odd Odd(x) =3y (x=2y+1)

Domain: Integers

Prove “The square of every even integer is even.”

Let a be an arbitrary integer. 1. Let a be an arbitrary integer
Suppose a is even. 2.1 Even(a) Assumption
Then, by definition, a = 2b for f_z Iy(a=2y) Gefinition
some integer b. 23 a=2b Elim
Squaring both sides, we get 2.4 a2=4b? = 2(2b?) Algebra

a2= 4b? = 2(2b?).
il

2 _
SO az iS, by definitign’ even. 2.5 3y (a - Zy) Intro 3
- 2.6 Even(a?) Definition

Since a was arbitrary, we have 5 .
shown that the square of every 2. Even(a)—>Even(a“) Direct Proof

even number is even. 3. Vx (Even(x)—>Even(x?)) IntroV



Even(x) =3y (x=2y)
English Proof: Even and Odd Odd(x) =3y (x=2y+1)

Domain: Integers

Prove “The square of every even integer is even.”

Proof: Let a be an arbitrary integer.

Suppose a is even. Then, by definition, a = 2b for some
integer b. Squaring both sides, we get a?= 4b? = 2(2b?).
So a?is, by definition,’ys\even.

Since a was arbitrary, we have shown that the square of
every even numberis even. B



Even(x) =3y (x=2y)
English Proof: Even and Odd Odd(x) =3y (x=2y+1)

Domain: Integers

Prove “The square of every even integer is even.”

Proof: Let a be an arbitrary even integer.

Then, by definition, a = 2b for some integer b. Squaring
both sides, we get a?=4b? = 2(2b?). So a?is, by
definition, is even.

Since a was arbitrary, we have shown that the square of
every even numberis even. B

Vx (Even(x) — Even(x?))



Predicate Definitions

Domain of Discourse

Even and Odd  [Even(X) =3y (x = 2y)

Odd(X) = Hy (x — Zy + 1) |ntegers

Prove “The sum of two odd numbers is even.”

Formally, prove Vx Vy ((Odd(x) A Odd(y))—>Even(x+y))



Predicate Definitions

Even(x) =3y (x = 2y)
Even and Odd Odd(x) = 3y (x = 2y + 1)

Domain of Discourse
Integers

Prove “The sum of two odd nhumbers is even.”
Formally, prove Vx Vy ((Odd(x) A Odd(y))—>Even(x+y))

Let x and y be arbitrary integers. 1. Letx be an arbitrary integer
2. Lety be an arbitrary integer

3. {(Odd(x) A Odd(y))\— Even(x+y)

Since x and y were arbitrary, the 4. Vy((0dd(x) A Odd(y)) - Even(x+y)) Intro ¥/
sum of any odd integers is even. 9. VxVy ((Odd(x) A Odd(y)) — Even(x+y)) Intro V



Predicate Definitions

Even(x) =3y (x = 2y)
Even and Odd Odd(x) = 3y (x = 2y + 1)

Domain of Discourse
Integers

Prove “The sum of two odd nhumbers is even.”
Formally, prove Vx Vy ((Odd(x) A Odd(y))—>Even(x+y))

1. Let x be an arbitrary integer

Let x and y be arbitrary integers.
2. Lety be an arbitrary integer

Suppose that both are odd. 3.1 0Odd(x) A Odd(y) Assumption
P

SO x+y is even. 3.9 Even(x+y)

- ~———

Since x and y were arbitrary, the 3. (Odd(x) A Odd(y)) - Even(x+y)  DPR

4. Vy ((Odd(x) A Odd(y)) = Even(x+y)) Intro V

sum of any odd integers is even.
5. VxVy ((0dd(x) A Odd(y)) — Even(x+y)) Intro V



Predicate Definitions

Even(x) =3y (x = 2y)
Even and Odd Odd(x) = 3y (x = 2y + 1)

Domain of Discourse
Integers

Prove “The sum of two odd nhumbers is even.”
Formally, prove Vx Vy ((Odd(x) A Odd(y))—>Even(x+y))

Let x and y be arbitrary integers. 1. Letxbe an arbitrary integer
2. Lety be an arbitrary integer
Suppose that both are odd. 3.1 Odd(x) A Odd(y)  Assumption
3.2 0Odd(x) Elim A: 2.1
3.3 0Odd(y) Elim A: 2.1
SO X+Y is even. 3.9 Even(x+y)

3. (0dd(x) A Odd(y)) > Even(x+y) DPR
4. Vy ((Odd(x) A Odd(y)) = Even(x+y)) Intro V
5. VxVy ((0dd(x) A Odd(y)) — Even(x+y)) Intro ¥V

Since x and y were arbitrary, the
sum of any odd integers is even.



English Proof: Even and Odd 0dd(x) =3y (x=2y+1)

Even(x) =3y (x=2y)

Domain: Integers

Prove “The sum of two odd numbers is even.”

Let x and y be arbitrary integers.

Suppose that both are odd.
Then, we have x = 2a+1 for

some integer a and y = 2b+1 for
some integer b.

so x+y is, by definition, even.

Since x and y were arbitrary, the
sum of any odd integers is even.

1. Let x be an arbitrary integer
2. Lety be an arbitrary integer

3.1 0Odd(x) A Odd(y) Assumption

Bz Odd(x) Elim A: 2.1
3.3 0Odd(y) Elim A: 2.1
3.4 3Jz(x=2z+1) Def of Odd: 2.2
3.5 x=2a+l Elim3:2.4
3.6 3dz(y=2z+1) Def of Odd: 2.3
3.7 y=2b+l Elim 3: 2.5
3.9 3z (x+y=22) Intro 3: 2.4
3.10 Even(x+y) Def of Even
3. (0dd(x) A Odd(y)) —> Even(x+y) DPR

4. Vy ((Odd(x) A Odd(y)) = Even(x+y)) IntroV
5. VxVy ((0dd(x) A Odd(y)) — Even(x+y)) Intro V



Even(x) =3y (x=2y)
English Proof: Even and Odd Odd(x) =3y (x=2y+1)

Domain: Integers

“ . ' K\
Prove The sum of two odd numbers is even. e 7 AL X Ly )
L Lo X
Let x and y be arbitrary integers. 1. Letxbe an arbitrary integer 2 Yo P
2. Lety be an arbitrary integer > Lv\x\ﬁ
3.1 0Odd(x) A Odd(y) Assumption
Suppose that both are odd. 3.2 Odd(x) Elim A: 2.1
3.3 0dd(y) Elim A: 2.1
Then, we have x = 2a+1 for 3.4 3Jz(x=2z+1) Def of Odd: 2.2
some integer aandy = 2b+1for 35 x=2a+l Elim 3:2.4
some integer b. 3.6 Jz(y=2z+1) Def of Odd: 2.3
3.7 y=2b+l Elim 3: 2.5
Their sum is x+y = ... = 2(a+b+1) 3.8 x+y=2(at+b+1) Algebra
: .l 3.9 3z (x+y=22) Intro 3: 2.4
so x+y is, by definition, even. 3.10 Even(x+y) Def of Even
Since x and y were arbitrary, the 3. (0dd(x) A Odd(y)) — Even(x+y) DPR

sum of any odd integers is even. 4 VY ((0Odd(x) A Odd(y)) — Even(x+y))  Intro ¥
5. VxVy ((0dd(x) A Odd(y)) — Even(x+y)) Intro V



Predicate Definitions
Domain of Discourse

Even(x) =3y (x = 2y)
Even and Odd 0dd(x) = 3y (x = 2y + 1) Integers

1 OULMOk) = Tyt (M\D

Prove The sum of two odd umbers IS even

Proof: Let x and y be arbitrary integers.

Suppose that both are odd. Then, we have x = 2a+1 for
some integer a and y = 2b+1 for some integer b.EI'heir

sum is x+y = (2a+1) + (2b+1) = 2a+2b+2 = 2(a+b+1)Zso
x+y is, by definition, even.

Since x and y were arbitrary, the sum of any two odd
integers is even. B




Predicate Definitions

Even and Odd  [Even(X) =3y (x = 2y)

Domain of Discourse
Integers

Odd(x)=3y (x =2y + 1)

Prove “The sum of two odd numbers is even.”

Proof: Let x and y be arbitrary odd integers.

Then, x = 2a+1 for some integer a and y = 2b+1 for some
integer b. Their sum is x+y = (2a+1) + (2b+1) = 2a+2b+2 =
2(a+b+1), so x+vy is, by definition, even.

Since x and y were arbitrary, the sum of any two odd
Integers is even.
N

Vx Yy ((0dd(x) A Odd(y))—Even(x+y))



