CSE 311.: Foundations of Computing

Lecture 10: Modular Arithmetic
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Last Class: Divisibility

Definition: “b divides a”

For a, b with-b # 0:
bl e 3q (a=qb)
\ J

Check Your Understanding. Which of the following are true?

5|1 25| 5 3|2

5] 1iff1 =05k 25 | 5iff 5 =25k 5|1]0iff0=5k 3]|2iff2=3k

@ @ 0|5 2|3

1|5iff5=1k 5| 25iff 25 = 5k O]5iff5=0k 2] 3iff3=2k




Domain of Discourse

Last class: Division Theorem Integers

Division Theorem

Fora, b withb > 0
there exist unique integers g, rwith 0 < r < b
9 such thata = gb + r. y

To put it another way, if we divide b in e get a
unique quotient g =adiv b »
and non-negative remainder ((r=amod b _

S S

Note: r=0 evenifa <O0.
Not quite the same as a $ d.




Last class: divand mod | = 3 QU\/\D&%

x=7-(xdiv7)+(x mod?7)
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Domain of Discourse

Modular Arithmetic Integers

U/\ /\ “{[Defmltlon ‘a is congruent to b modulo m”

For a, b m wit
V™ bﬁm)mnua—b)

New notion of “sameness” or “equivalence” that
\&'\II help us understand modular arithmetic.

O This is a predicate (T/F values) on integers a, b, m. It
es not produce numbers as output.

\“@There is really a notion of sameness for each m > 0.

% i It may help you to think of a = b (mod m) for a fixed
m > 0 as an equivalence a =,,, b.
Standard math notation wri e (mod m) on the

right to tell you what notion of sameness = means.




Domain of Discourse
Integers

Modular Arithmetic

Definition: “a is congruent to b modulo m”

Fora, b, m withm > 0
a=b(modm) e m|(a —b)

\_

A chain of equivalences is written

a=b=c=d(modm)

This means a = b (mod m)
and b = ¢ (mod m)

and ¢c = d (mod m)




Domain of Discourse

Modular Arithmetic Integers

Definition: “a is congruent to b modulo m”

For a
a=b(modm) e m|(a —b)
-

\ /
Check Your Understanding. What do each of these mean?

When are they true?

X =0 (mod 2)
This statemmhe same as saying “x is even”; so, any x that is
vem(@l gative even numbers) will work.

1z19(mods) — | g = 4O

e ﬁWement is true. 19-(-1) =20 wh@'ls *ivisinejByZ \/

y =2 (mod 7)

TR TR kA kBl ¥




a=b(modm) e m|(a —Db)

Modular Arithmetic: A Property

Let a, b, m be integers with m > 0.
Then, a = b (mod m) if and only if a mod m = b mod m.




a=b(modm) e m|(a —Db)

Modular Arithmetic: A Property

Let a, b, m be integers with m > 0.
Then, a = b (mod m) if and only if a mod m = b mod m.

(<) Suppose that a mod m = b mod m.

By the division theorem, a = mq + (a mod m) and
b = ms + (b mod m) for some integers g,s.

Goal: show a = b (mod m), i.e., m | (a — b).




a=b(modm) e m|(a —Db)

Modular Arithmetic: A Property

Let a, b, m be integers with m > 0.
Then, a = b (mod m) if and only if a mod m = b mod m.

(<) Suppose that a mod m = b mod m.<

By the division theorem, a = mq + (a mod m) and
b = ms + (b mod m) for some integers g,s.

Then,a -b = (mq + (a mod m)) - (ms + (b mod m))
= m(q-s) + (amodm- b modm)
= m(q-s)sinceamodm = bmodm

Goal: show a = b (mod m), i.e., m | (a — b).




a=b(modm) e m|(a —Db)

Modular Arithmetic: A Property

Let a, b, m be integers with m > 0.
Then, a = b (mod m) if and only if a mod m = b mod m.

(<) Suppose that a mod m = b mod m.

By the division theorem, a = mq + (a mod m) and
b = ms + (b mod m) for some integers g,s.

Then,a -b = (mq + (a mod m)) - (ms + (b mod m))
= m(q-s) + (amodm- b modm)

= m(q-s)sinceamodm = bmodm

Therefore, m | (a — b) and so a = b (mod m).

Goal: show a = b (mod m), i.e, m | (a — b). (Halfway there)




a=b(modm) e m|(a —Db)

Modular Arithmetic: A Property

Let a, b, m be integers with m > 0.
Then, a = b (mod m) if and only if a mod m = b mod m.

—_—

N

(=) Suppose that a = b (mod m).

Then, ncw;b) by definition of congruence.
So, a - b = km for some integer k by definition of divides.
Therefore, a = b + km.

S~

Goal: show a mod m = b mod m




a=b(modm) e m|(a —Db)

Modular Arithmetic: A Property

Let a, b, m be integers with m > 0.
Then, a = b (mod m) if and only if a mod m = b mod m.

(=) Suppose that a = b (mod m).

Then, m | (a - b) by definition of congruence.
So, a - b = km for some integer k by definition of divides.
Therefore, a = b + km.

By the Division Theorem, we have a = gm + (a mod m),
where 0 < (a mod m) < m.

Goal: show a mod m = b mod m




a=b(modm) e m|(a —Db)

Modular Arithmetic: A Property

Let a, b, m be integers with m > 0.
Then, a = b (mod m) if and only if a mod m = b mod m.

(=) Suppose that a = b (mod m).

Then, m | (a - b) by definition of congruence.
So, a - b = km for some integer k by definition of divides.
Therefore, a = b + km.

By the Division Theorem, we have a = gm + (a mod m),
where 0 < (a mod m) < m.

Combining these, we have gm + (a mod m) =(a\=b + km
orequiv, b = gm — km + (amod m) = (g — kYm + (a mod m).
E_%y the Division Theorem, we have b mod m = a mod m. H

‘ Goal: show a mod m = b mod m ‘



a=b(modm) e m|(a —Db)

Modular Arithmetic: A Property

Let a, b, m be integers with m > 0.
Then, a = b (mod m) if and only if a mod m = b mod m.

(=) Suppose that a = b (mod m).

Then, m | (a - b) by definition of congruence.
So, a - b = km for some integer k by definition of divides.
Therefore, a = b + km.

By the Division Theorem, we have a = gm + (a mod m),
where 0 < (a mod m) < m.

Combining these, we have gm + (amod m) = a =b + km
orequiv, b =gm —km + (amodm) = (g — k)m + (a mod.m).
By the Division Theorem, we have b mod m = a mod m.

Goal: show a mod m = b mod m ‘



Modular Arithmetic: A Property

Let a, b, m be integers with m > In future, we will usually go

Then, a = b (mod m) if and only| yjrectly between these

(=) Suppose that a = b (mod m).‘/ without discussing

“divides” every time.
6/ finiti congruence.
some integer k by definition of divides.

By the Division Theorem, we have a = gm + (a mod m),
where 0 < (a mod m) < m.

Combining these, we have gm + (amod m) = a =b + km
orequiv., b = gm — km + (amodm) = (g — k)m + (a mod m).
By the Division Theorem, we have b mod m = a mod m. H



The mod m function vs the = (mod m) predicate

P

* What we have just shown

— The mod m function maps any integer a to a
remainder a mod m € {0,1,.., m — 1}.

— Imagine grouping together all integers that have
the same value of the mod m function
That is, the same remainder in {0,1,..,m — 1}.

— The = (mod m) predicate compares integers
a,b. Itis true if and only if the mod m function
has the same value on a and on b.

That is, a and b are in the same group.



Recall: Familiar Properties of “="

e Ifa=bandb =c,then a = c. k:“b
- j.e.,ifa=b=c,thena =c + Cf_d

o

e fa=bandc=d,thena+c=0b+d. L&k

— in particular, since ¢ = c is true, we can “+ c¢” to both sides

* Ifa=bandc =d,then ac = bd.

— in particular, since ¢ = c is true, we can “Xc” to both sides

These are the facts that allow us to
use algebra to solve problems




Modular Arithmetic: Basic Property

Let m be a positive integer.
If a = b (mod m) and b = ¢ (mod m),
then a = ¢ (mod m).




Modular Arithmetic: Basic Property

Let m be a positive integer.
If a = b (mod m) and b = ¢ (mod m),
then a = ¢ (mod m).

Suppose that a = b (mod m) and b = ¢ (mod m).



Modular Arithmetic: Basic Property

Let m be a positive integer.
If a = b (mod m) and b = ¢ (mod m),
then a = ¢ (mod m).

Suppose that a = b (mod m) and b = ¢ (mod m).
Then, by the previous property, we have
a mod m = b mod m and b mod m = ¢ mod m.

Putting these together, we have a mod m = ¢ mod m,
which says that a = ¢ (mod m), by the previous
property.



Modular Arithmetic: Addition Property

Let m be a positive integer.
If a = b (modm) and ¢ = d (mod m)
thena+ c = b + d (mod m).




Modular Arithmetic: Addition Property

Let m be a positive integer.
If a = b (modm) and ¢ = d (mod m)
thena+ c = b + d (mod m).

Suppose that a = b (mod m) and ¢ = d (mod m).



Modular Arithmetic: Addition Property

Let m be a positive integer.
If a = b (mod m) and ¢ = d (mod m)

then@l +\C>E @— (mod @

Suppose that that a = b (mod m) and ¢ = d (mod m).
Unrolling the definitions, we can see thata - b = km and

c —d = jm for some integers k, j.
(@-b) £le-B

Adding the equations together gives us -

(@+c)- (b+d) = mk+)). = KM M

By the definition of congruence, we have W).
M \ (@%A — (el o




Modular Arithmetic: Multiplication Property

Let m be a positive integer.
If a = b (modm) and ¢ = d (mod m)
then ac = bd (mod m).

Suppose that a = b (mod m) and ¢ = d (mod m).



Modular Arithmetic: Multiplication Property

Let m be a positive integer.
If a = b (modm) and ¢ = d (mod m)
then ac = bd (mod m).

Suppose that a = b (mod m) and ¢ = d (mod m).
Unrolling the definitions, we can see thata - b = km and
¢ -d = jm for some integer k, j or equivalently, a = km + b

and ¢ = jm + d. -
< T



Modular Arithmetic: Multiplication Property

Let m be a positive integer.

If a=b (m = d (mod m)
thep-ac = bd (mod m). M\ &bk
~—_ | I

Suppose that a = b (mod m) and ¢ = d (mod m).
Unrolling the definitions, we can see thata - b = km and

¢ -d = jm for some integer k, j or equivalently, a = km + b
and c = jm + d.

Multiplying both together givesus ac = (km +b)(jm +d) =
kjm? + kmd + bjm + bd.



Modular Arithmetic: Multiplication Property

Let m be a positive integer.
If a = b (modm) and ¢ = d (mod m)
then ac = bd (mod m).

Suppose that a = b (mod m) and ¢ = d (mod m).
Unrolling the definitions, we can see thata - b = km and

¢ -d = jm for some integer k, j or equivalently, a = km + b
and c = jm + d.

Multiplying both together givesus ac = (km +b)(jm +d) =
kjm? + kmd + bjm + bd. Re-arranging, this becomes

ac -bd = m(kjm + kd + bj).
v—__\/



Modular Arithmetic: Multiplication Property

Let m be a positive integer.
If a = b (modm) and ¢ = d (mod m)
then ac = bd (mod m).

Suppose that a = b (mod m) and ¢ = d (mod m).
Unrolling the definitions, we can see thata - b = km and

¢ -d = jm for some integer k, j or equivalently, a = km + b
and c = jm + d.

Multiplying both together givesus ac = (km +b)(jm +d) =
kjm? + kmd + bjm + bd. Re-arranging, this becomes
ac -bd = m(kjm + kd + bj).

This says ac = bd (mod m) by the definition of congruence. [l



Modular Arithmetic: Properties

If a = b (modm) and b = ¢ (mod m) then a = ¢ (mod m)

If a = b (mod m) and ¢ = d (mod m) then
a+c=b+d(modm) and
ac = bd (mod m)

Corollary: |If a = b (mod m) then
a+c=b+ c(modm) and
ac = bc (mod m)

These allow us to solve problems in modular arithmetic, e.g.
 add/subtract numbers from both sides of equations
 multiply numbers on both sides of equations.

* use chains of equivalences






Example: Proof by Cases with mod

e )
Wgen Prove that n?> = 0 (mod 4) or
n? =1 (mod 4).

Let’s start by looking at small examples:
02=0 =0 (mod 4)
12=1 =1 (mod 4)
22=4 =0 (mod 4)
32=9 =1 (mod 4)
42= 16=0 (mod 4)
53216 =1 ol ¢\

It looks as though we have:
If nis even then n® = 0 (mod 4)
If nis odd then n® = 1 (mod 4)



Example: Proof by Cases with mod

Let n be an integer. Prove that n? = 0 (mod 4) or
n? =1 (mod 4).

/ﬁase 1 (n is even):
Suppose n is even.
Then, n = 2k for some integer k.
So, n? = (2k)*= 4k? = 4k* + 0.
So, by the definition of congruence,

we have n? = 0 (mod 4). L[\AZ -0 Lf\



Example: Proof by Cases with mod

Let n be an integer. Prove that n? = 0 (mod 4) or
n? =1 (mod 4).

Case 1 (n is even): Done.

Case 2 (n is odd):
Suppose n is odd.
Then, n = 2k + 1 for some integer k.

So, n? = (2k + 1)?

=4k* + 4k + 1

=4(k*+ k) + 1.
So, by definition of congruence,
we have n? = 1 (mod 4).

Result follows by proof by cases since n is either even or odd



