
CSE 311: Foundations of Computing

Lecture 10:  Modular Arithmetic



Check Your Understanding.  Which of the following are true?

5 |	1 25 | 5 5 | 0 3 |	2

1 | 5 5 | 25 0 | 5 2 | 3

Last Class: Divisibility

5 | 1 iff 1 = 5k

1 | 5 iff 5 = 1k

25 | 5 iff 5 = 25k

5 | 25 iff 25 = 5k

5 | 0 iff 0 = 5k

0 | 5 iff 5 = 0k

3 | 2 iff 2 = 3k

2 | 3 iff 3 = 2k

For 𝑎, 𝑏 with 𝑏 ≠ 0:
𝑏 | 𝑎 ↔ ∃𝑞 (𝑎 = 𝑞𝑏)

Definition: “b divides a”



To put it another way, if we divide b into a, we get a 
unique quotient                                                                     
and non-negative remainder

Last class: Division Theorem

q = a div b

Note: r ≥ 0 even if a < 0.  
Not quite the same as  a % d.

For 𝑎, 𝑏 with 𝑏 > 0
there exist unique integers q, r with 0 ≤ 𝑟 < 𝑏
such that 𝑎 = 𝑞𝑏 + 𝑟.

Division Theorem

r = a mod b

Integers
Domain of Discourse



-7 -6 -5 -4 -3 -2 -1 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15

-1 -1 -1 -1 -1 -1 -1 0  0  0  0  0  0  0  1  1  1  1  1  1  1  2  2

Last class: div and mod

x div 7

x

x mod 7
0  1  2  3  4  5  6  0  1  2  3  4  5  6  0  1  2  3  4  5  6  0  1

x = 7 · (x div 7) + (x mod 7)

7 · 1 7 · 27 · 07 · (-1)



Arithmetic, mod 7

(a + b) mod 7
(a ´ b) mod 7

+ 0 1 2 3 4 5 6

0 0 1 2 3 4 5 6

1 1 2 3 4 5 6 0

2 2 3 4 5 6 0 1

3 3 4 5 6 0 1 2

4 4 5 6 0 1 2 3

5 5 6 0 1 2 3 4

6 6 0 1 2 3 4 5

X 0 1 2 3 4 5 6

0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6

2 0 2 4 6 1 3 5

3 0 3 6 2 5 1 4

4 0 4 1 5 2 6 3

5 0 5 3 1 6 4 2

6 0 6 5 4 3 2 1



Modular Arithmetic

New notion of “sameness” or “equivalence” that 
will help us understand modular arithmetic.   

For 𝑎, 𝑏,𝑚 with 𝑚 > 0
𝑎 ≡ 𝑏 (mod 𝑚) ↔ 𝑚 | (𝑎 − 𝑏)

Definition: “a is congruent to b modulo m”

Integers
Domain of Discourse

This is a predicate (T/F values) on integers 𝑎, 𝑏,𝑚.  It 
does not produce numbers as output. 

There is really a notion of sameness for each 𝑚 > 0. 
It may help you to think of  𝒂 ≡ 𝒃 (mod 𝑚) for a fixed 
𝑚 > 0 as an equivalence 𝒂 ≡! 𝒃.  
Standard math notation writes the (mod 𝑚) on the 
right to tell you what notion of sameness ≡ means.



Modular Arithmetic

A chain of equivalences is written

𝑎 ≡ 𝑏 ≡ 𝑐 ≡ 𝑑 mod 𝑚

This means 𝑎 ≡ 𝑏 mod 𝑚
and 𝑏 ≡ 𝑐 mod 𝑚
and 𝑐 ≡ 𝑑 mod 𝑚

For 𝑎, 𝑏,𝑚 with 𝑚 > 0
𝑎 ≡ 𝑏 (mod 𝑚) ↔ 𝑚 | (𝑎 − 𝑏)

Definition: “a is congruent to b modulo m”

Integers
Domain of Discourse



Modular Arithmetic

Check Your Understanding.  What do each of these mean?
When are they true?

x ≡ 0 (mod 2)

-1 ≡ 19 (mod 5)

y ≡ 2 (mod 7)

For 𝑎, 𝑏,𝑚 with 𝑚 > 0
𝑎 ≡ 𝑏 (mod 𝑚) ↔ 𝑚 | (𝑎 − 𝑏)

Definition: “a is congruent to b modulo m”

This statement is the same as saying “x is even”; so, any x that is 
even (including negative even numbers) will work.

This statement is true.  19 - (-1) = 20 which is divisible by 5

This statement is true for  y in { ..., -12, -5, 2, 9, 16, ...}.  In other 
words, all y of the form 2+7k for k an integer. 

Integers
Domain of Discourse



Modular Arithmetic: A Property

Let 𝒂, 𝒃,𝒎 be integers with 𝒎 > 𝟎.                              
Then, 𝒂 ≡ 𝒃 (mod𝒎) if and only if 𝒂𝐦𝐨𝐝𝒎 = 𝒃𝐦𝐨𝐝𝒎.

𝑎 ≡ 𝑏 (mod 𝑚) ↔ 𝑚 | (𝑎 − 𝑏)



Modular Arithmetic: A Property

(⇐)	Suppose that 𝑎 mod 𝑚 = 𝑏 mod 𝑚.

By the division theorem, 𝑎 = 𝑚𝑞 + (𝑎 mod 𝑚) and
𝑏 = 𝑚𝑠 + (𝑏 mod 𝑚) for some integers 𝑞,𝑠.

Goal: show 𝑎 ≡ 𝑏 (mod 𝑚), i.e., 𝑚 | (𝑎 − 𝑏).

Let 𝒂, 𝒃,𝒎 be integers with 𝒎 > 𝟎.                              
Then, 𝒂 ≡ 𝒃 (mod𝒎) if and only if 𝒂𝐦𝐨𝐝𝒎 = 𝒃𝐦𝐨𝐝𝒎.

𝑎 ≡ 𝑏 (mod 𝑚) ↔ 𝑚 | (𝑎 − 𝑏)



Modular Arithmetic: A Property

(⇐)	Suppose that 𝑎 mod 𝑚 = 𝑏 mod 𝑚.

By the division theorem, 𝑎 = 𝑚𝑞 + (𝑎 mod 𝑚) and
𝑏 = 𝑚𝑠 + (𝑏 mod 𝑚) for some integers 𝑞,𝑠.

Then, 𝑎 – 𝑏 = (𝑚𝑞 + (𝑎 mod 𝑚)) – (𝑚𝑠 + (𝑏 mod 𝑚))
= 𝑚(𝑞 – 𝑠) + (𝑎 mod 𝑚 – 𝑏 mod 𝑚)
= 𝑚(𝑞 – 𝑠) since 𝑎 mod 𝑚 = 𝑏 mod 𝑚

Let 𝒂, 𝒃,𝒎 be integers with 𝒎 > 𝟎.                              
Then, 𝒂 ≡ 𝒃 (mod𝒎) if and only if 𝒂𝐦𝐨𝐝𝒎 = 𝒃𝐦𝐨𝐝𝒎.

Goal: show 𝑎 ≡ 𝑏 (mod 𝑚), i.e., 𝑚 | (𝑎 − 𝑏).

𝑎 ≡ 𝑏 (mod 𝑚) ↔ 𝑚 | (𝑎 − 𝑏)



Modular Arithmetic: A Property

(⇐)	Suppose that 𝑎 mod 𝑚 = 𝑏 mod 𝑚.

By the division theorem, 𝑎 = 𝑚𝑞 + (𝑎 mod 𝑚) and
𝑏 = 𝑚𝑠 + (𝑏 mod 𝑚) for some integers 𝑞,𝑠.

Then, 𝑎 – 𝑏 = (𝑚𝑞 + (𝑎 mod 𝑚)) – (𝑚𝑠 + (𝑏 mod 𝑚))
= 𝑚(𝑞 – 𝑠) + (𝑎 mod 𝑚 – 𝑏 mod 𝑚)
= 𝑚(𝑞 – 𝑠) since 𝑎 mod 𝑚 = 𝑏 mod 𝑚

Therefore, 𝑚 | (𝑎 − 𝑏) and so 𝑎 ≡ 𝑏 (mod 𝑚).

Let 𝒂, 𝒃,𝒎 be integers with 𝒎 > 𝟎.                              
Then, 𝒂 ≡ 𝒃 (mod𝒎) if and only if 𝒂𝐦𝐨𝐝𝒎 = 𝒃𝐦𝐨𝐝𝒎.

Goal: show 𝑎 ≡ 𝑏 (mod 𝑚), i.e., 𝑚 | (𝑎 − 𝑏). (Halfway there)

𝑎 ≡ 𝑏 (mod 𝑚) ↔ 𝑚 | (𝑎 − 𝑏)



Modular Arithmetic: A Property

(⇒)	Suppose that 𝑎 ≡ 𝑏 (mod 𝑚).

Then, 𝑚 | (𝑎 – 𝑏) by definition of congruence.
So, 𝑎 – 𝑏 = 𝑘𝑚 for some integer 𝑘 by definition of divides.
Therefore, 𝑎 = 𝑏 + 𝑘𝑚. 

Let 𝒂, 𝒃,𝒎 be integers with 𝒎 > 𝟎.                              
Then, 𝒂 ≡ 𝒃 (mod𝒎) if and only if 𝒂𝐦𝐨𝐝𝒎 = 𝒃𝐦𝐨𝐝𝒎.

Goal: show 𝑎 mod 𝑚 ≡ 𝑏 mod 𝑚

𝑎 ≡ 𝑏 (mod 𝑚) ↔ 𝑚 | (𝑎 − 𝑏)



Modular Arithmetic: A Property

(⇒)	Suppose that 𝑎 ≡ 𝑏 (mod 𝑚).

Then, 𝑚 | (𝑎 – 𝑏) by definition of congruence.
So, 𝑎 – 𝑏 = 𝑘𝑚 for some integer 𝑘 by definition of divides.
Therefore, 𝑎 = 𝑏 + 𝑘𝑚. 

By the Division Theorem, we have 𝑎 = 𝑞𝑚 + 𝑎 mod 𝑚 ,
where 0 ≤ (𝑎 mod 𝑚) < 𝑚.

Let 𝒂, 𝒃,𝒎 be integers with 𝒎 > 𝟎.                              
Then, 𝒂 ≡ 𝒃 (mod𝒎) if and only if 𝒂𝐦𝐨𝐝𝒎 = 𝒃𝐦𝐨𝐝𝒎.

Goal: show 𝑎 mod 𝑚 ≡ 𝑏 mod 𝑚

𝑎 ≡ 𝑏 (mod 𝑚) ↔ 𝑚 | (𝑎 − 𝑏)



Modular Arithmetic: A Property

(⇒)	Suppose that 𝑎 ≡ 𝑏 (mod 𝑚).

Then, 𝑚 | (𝑎 – 𝑏) by definition of congruence.
So, 𝑎 – 𝑏 = 𝑘𝑚 for some integer 𝑘 by definition of divides.
Therefore, 𝑎 = 𝑏 + 𝑘𝑚. 

By the Division Theorem, we have 𝑎 = 𝑞𝑚 + 𝑎 mod 𝑚 ,
where 0 ≤ (𝑎 mod 𝑚) < 𝑚.

Combining these, we have 𝑞𝑚 + 𝑎 mod 𝑚 = 𝑎 = 𝑏 + 𝑘𝑚
or equiv., 𝑏 = 𝑞𝑚 − 𝑘𝑚 + 𝑎 mod 𝑚 = 𝑞 − 𝑘 𝑚 + 𝑎 mod 𝑚 .
By the Division Theorem, we have 𝑏 mod 𝑚 = 𝑎 mod 𝑚.

Let 𝒂, 𝒃,𝒎 be integers with 𝒎 > 𝟎.                              
Then, 𝒂 ≡ 𝒃 (mod𝒎) if and only if 𝒂𝐦𝐨𝐝𝒎 = 𝒃𝐦𝐨𝐝𝒎.

Goal: show 𝑎 mod 𝑚 ≡ 𝑏 mod 𝑚

𝑎 ≡ 𝑏 (mod 𝑚) ↔ 𝑚 | (𝑎 − 𝑏)



Modular Arithmetic: A Property

(⇒)	Suppose that 𝑎 ≡ 𝑏 (mod 𝑚).

Then, 𝑚 | (𝑎 – 𝑏) by definition of congruence.
So, 𝑎 – 𝑏 = 𝑘𝑚 for some integer 𝑘 by definition of divides.
Therefore, 𝑎 = 𝑏 + 𝑘𝑚. 

By the Division Theorem, we have 𝑎 = 𝑞𝑚 + 𝑎 mod 𝑚 ,
where 0 ≤ (𝑎 mod 𝑚) < 𝑚.

Combining these, we have 𝑞𝑚 + 𝑎 mod 𝑚 = 𝑎 = 𝑏 + 𝑘𝑚
or equiv., 𝑏 = 𝑞𝑚 − 𝑘𝑚 + 𝑎 mod 𝑚 = 𝑞 − 𝑘 𝑚 + 𝑎 mod 𝑚 .
By the Division Theorem, we have 𝑏 mod 𝑚 = 𝑎 mod 𝑚.

Let 𝒂, 𝒃,𝒎 be integers with 𝒎 > 𝟎.                              
Then, 𝒂 ≡ 𝒃 (mod𝒎) if and only if 𝒂𝐦𝐨𝐝𝒎 = 𝒃𝐦𝐨𝐝𝒎.

Goal: show 𝑎 mod 𝑚 ≡ 𝑏 mod 𝑚

𝑎 ≡ 𝑏 (mod 𝑚) ↔ 𝑚 | (𝑎 − 𝑏)



Modular Arithmetic: A Property

(⇒)	Suppose that 𝑎 ≡ 𝑏 (mod 𝑚).

Then, 𝑚 | (𝑎 – 𝑏) by definition of congruence.
So, 𝑎 – 𝑏 = 𝑘𝑚 for some integer 𝑘 by definition of divides.
Therefore, 𝑎 = 𝑏 + 𝑘𝑚. 

By the Division Theorem, we have 𝑎 = 𝑞𝑚 + 𝑎 mod 𝑚 ,
where 0 ≤ (𝑎 mod 𝑚) < 𝑚.

Combining these, we have 𝑞𝑚 + 𝑎 mod 𝑚 = 𝑎 = 𝑏 + 𝑘𝑚
or equiv., 𝑏 = 𝑞𝑚 − 𝑘𝑚 + 𝑎 mod 𝑚 = 𝑞 − 𝑘 𝑚 + 𝑎 mod 𝑚 .
By the Division Theorem, we have 𝑏 mod 𝑚 = 𝑎 mod 𝑚.

Let 𝒂, 𝒃,𝒎 be integers with 𝒎 > 𝟎.                              
Then, 𝒂 ≡ 𝒃 (mod𝒎) if and only if 𝒂𝐦𝐨𝐝𝒎 = 𝒃𝐦𝐨𝐝𝒎.

In future, we will usually go 
directly between these 
without discussing 
“divides” every time.



The 𝐦𝐨𝐝𝒎 function vs the ≡ (mod𝒎) predicate

• What we have just shown
– The 𝐦𝐨𝐝𝒎 function maps any integer 𝒂 to a 

remainder 𝒂𝐦𝐨𝐝𝒎 ∈ {0,1, . . ,𝒎 − 1}.

– Imagine grouping together all integers that have 
the same value of the 𝐦𝐨𝐝𝒎 function

That is, the same remainder in 0,1, . . ,𝒎 − 1 .

– The ≡ (mod𝒎) predicate compares integers 
𝒂, 𝒃. It is true if and only if the 𝐦𝐨𝐝𝒎 function 
has the same value on 𝒂 and on 𝒃. 

That is, 𝒂 and 𝒃 are in the same group.



• If 𝑎 = 𝑏 and 𝑏 = 𝑐, then 𝑎 = 𝑐.
− i.e., if 𝑎 = 𝑏 = 𝑐, then 𝑎 = 𝑐

• If 𝑎 = 𝑏 and 𝑐 = 𝑑, then 𝑎 + 𝑐 = 𝑏 + 𝑑.
− in particular, since 𝑐 = 𝑐 is true, we can “+ 𝑐” to both sides

• If 𝑎 = 𝑏 and 𝑐 = 𝑑, then 𝑎𝑐 = 𝑏𝑑.
− in particular, since 𝑐 = 𝑐 is true, we can “×𝑐” to both sides

Recall: Familiar Properties of “=”

These are the facts that allow us to 
use algebra to solve problems



Modular Arithmetic: Basic Property

Let 𝑚 be a positive integer.
If 𝒂 ≡ 𝒃 mod 𝑚 and 𝒃 ≡ 𝒄 (mod 𝑚), 
then 𝒂 ≡ 𝒄 (mod 𝑚).



Modular Arithmetic: Basic Property

Suppose that 𝑎 ≡ 𝑏 (mod 𝑚) and 𝑏 ≡ 𝑐 (mod 𝑚). 

Let 𝑚 be a positive integer.
If 𝒂 ≡ 𝒃 mod 𝑚 and 𝒃 ≡ 𝒄 (mod 𝑚), 
then 𝒂 ≡ 𝒄 (mod 𝑚).



Modular Arithmetic: Basic Property

Suppose that 𝑎 ≡ 𝑏 (mod 𝑚) and 𝑏 ≡ 𝑐 (mod 𝑚). 
Then, by the previous property, we have 
𝑎 mod 𝑚 = 𝑏 mod 𝑚 and 𝑏 mod 𝑚 = 𝑐 mod 𝑚. 

Putting these together, we have 𝑎 mod 𝑚 = 𝑐 mod 𝑚, 
which says that 𝑎 ≡ 𝑐 (mod 𝑚), by the previous 
property.

Let 𝑚 be a positive integer.
If 𝒂 ≡ 𝒃 mod 𝑚 and 𝒃 ≡ 𝒄 (mod 𝑚), 
then 𝒂 ≡ 𝒄 (mod 𝑚).



Modular Arithmetic: Addition Property

Let 𝑚 be a positive integer.  
If 𝒂 ≡ 𝒃 (mod 𝑚) and 𝒄 ≡ 𝒅 (mod 𝑚)
then 𝒂 + 𝒄 ≡ 𝒃 + 𝒅 mod 𝑚 .



Modular Arithmetic: Addition Property

Suppose that 𝑎 ≡ 𝑏 (mod 𝑚) and 𝑐 ≡ 𝑑 (mod 𝑚).

Let 𝑚 be a positive integer.  
If 𝒂 ≡ 𝒃 (mod 𝑚) and 𝒄 ≡ 𝒅 (mod 𝑚)
then 𝒂 + 𝒄 ≡ 𝒃 + 𝒅 mod 𝑚 .



Modular Arithmetic: Addition Property

Suppose that that 𝑎 ≡ 𝑏 (mod 𝑚) and 𝑐 ≡ 𝑑 (mod 𝑚).
Unrolling the definitions, we can see that 𝑎 – 𝑏 = 𝑘𝑚 and      
𝑐 – 𝑑 = 𝑗𝑚 for some integers 𝑘, 𝑗.

Adding the equations together gives us 
(𝑎 + 𝑐) – (𝑏 + 𝑑) = 𝑚(𝑘 + 𝑗).

By the definition of congruence, we have 𝑎 + 𝑐 ≡ 𝑏 + 𝑑 (mod 𝑚).

Let 𝑚 be a positive integer.  
If 𝒂 ≡ 𝒃 (mod 𝑚) and 𝒄 ≡ 𝒅 (mod 𝑚)
then 𝒂 + 𝒄 ≡ 𝒃 + 𝒅 mod 𝑚 .



Modular Arithmetic: Multiplication Property

Suppose that 𝑎 ≡ 𝑏 (mod 𝑚) and 𝑐 ≡ 𝑑 (mod 𝑚).

Let 𝑚 be a positive integer.  
If 𝒂 ≡ 𝒃 (mod 𝑚) and 𝒄 ≡ 𝒅 (mod 𝑚)
then 𝒂𝒄 ≡ 𝒃𝒅 mod 𝑚 .



Modular Arithmetic: Multiplication Property

Suppose that 𝑎 ≡ 𝑏 (mod 𝑚) and 𝑐 ≡ 𝑑 (mod 𝑚).
Unrolling the definitions, we can see that 𝑎 – 𝑏 = 𝑘𝑚 and 
𝑐 – 𝑑 = 𝑗𝑚 for some integer 𝑘, 𝑗 or equivalently, 𝑎 = 𝑘𝑚 + 𝑏
and 𝑐 = 𝑗𝑚 + 𝑑.

Let 𝑚 be a positive integer.  
If 𝒂 ≡ 𝒃 (mod 𝑚) and 𝒄 ≡ 𝒅 (mod 𝑚)
then 𝒂𝒄 ≡ 𝒃𝒅 mod 𝑚 .



Modular Arithmetic: Multiplication Property

Suppose that 𝑎 ≡ 𝑏 (mod 𝑚) and 𝑐 ≡ 𝑑 (mod 𝑚).
Unrolling the definitions, we can see that 𝑎 – 𝑏 = 𝑘𝑚 and 
𝑐 – 𝑑 = 𝑗𝑚 for some integer 𝑘, 𝑗 or equivalently, 𝑎 = 𝑘𝑚 + 𝑏
and 𝑐 = 𝑗𝑚 + 𝑑.

Multiplying both together gives us  𝑎𝑐 = (𝑘𝑚 + 𝑏)(𝑗𝑚 + 𝑑) =
𝑘𝑗𝑚2+ 𝑘𝑚𝑑 + 𝑏𝑗𝑚 + 𝑏𝑑. 

Let 𝑚 be a positive integer.  
If 𝒂 ≡ 𝒃 (mod 𝑚) and 𝒄 ≡ 𝒅 (mod 𝑚)
then 𝒂𝒄 ≡ 𝒃𝒅 mod 𝑚 .



Modular Arithmetic: Multiplication Property

Suppose that 𝑎 ≡ 𝑏 (mod 𝑚) and 𝑐 ≡ 𝑑 (mod 𝑚).
Unrolling the definitions, we can see that 𝑎 – 𝑏 = 𝑘𝑚 and 
𝑐 – 𝑑 = 𝑗𝑚 for some integer 𝑘, 𝑗 or equivalently, 𝑎 = 𝑘𝑚 + 𝑏
and 𝑐 = 𝑗𝑚 + 𝑑.

Multiplying both together gives us  𝑎𝑐 = (𝑘𝑚 + 𝑏)(𝑗𝑚 + 𝑑) =
𝑘𝑗𝑚2+ 𝑘𝑚𝑑 + 𝑏𝑗𝑚 + 𝑏𝑑. Re-arranging, this becomes 
𝑎𝑐 – 𝑏𝑑 = 𝑚(𝑘𝑗𝑚 + 𝑘𝑑 + 𝑏𝑗).

Let 𝑚 be a positive integer.  
If 𝒂 ≡ 𝒃 (mod 𝑚) and 𝒄 ≡ 𝒅 (mod 𝑚)
then 𝒂𝒄 ≡ 𝒃𝒅 mod 𝑚 .



Modular Arithmetic: Multiplication Property

Suppose that 𝑎 ≡ 𝑏 (mod 𝑚) and 𝑐 ≡ 𝑑 (mod 𝑚).
Unrolling the definitions, we can see that 𝑎 – 𝑏 = 𝑘𝑚 and 
𝑐 – 𝑑 = 𝑗𝑚 for some integer 𝑘, 𝑗 or equivalently, 𝑎 = 𝑘𝑚 + 𝑏
and 𝑐 = 𝑗𝑚 + 𝑑.

Multiplying both together gives us  𝑎𝑐 = (𝑘𝑚 + 𝑏)(𝑗𝑚 + 𝑑) =
𝑘𝑗𝑚2+ 𝑘𝑚𝑑 + 𝑏𝑗𝑚 + 𝑏𝑑. Re-arranging, this becomes 
𝑎𝑐 – 𝑏𝑑 = 𝑚(𝑘𝑗𝑚 + 𝑘𝑑 + 𝑏𝑗).

This says 𝑎𝑐 ≡ 𝑏𝑑 (mod 𝑚) by the definition of congruence.

Let 𝑚 be a positive integer.  
If 𝒂 ≡ 𝒃 (mod 𝑚) and 𝒄 ≡ 𝒅 (mod 𝑚)
then 𝒂𝒄 ≡ 𝒃𝒅 mod 𝑚 .



Modular Arithmetic: Properties

If 𝒂 ≡ 𝒃 (mod 𝑚) then 
𝒂 + 𝒄 ≡ 𝒃 + 𝒄 mod 𝑚 and
𝒂𝒄 ≡ 𝒃𝒄 mod 𝑚

Corollary:

If 𝒂 ≡ 𝒃 mod 𝑚 and 𝒄 ≡ 𝒅 mod 𝑚 then 
𝒂 + 𝒄 ≡ 𝒃 + 𝒅 mod 𝑚 and  
𝒂𝒄 ≡ 𝒃𝒅 mod 𝑚

If 𝒂 ≡ 𝒃 (mod 𝑚) and 𝒃 ≡ 𝒄 (mod 𝑚) then 𝒂 ≡ 𝒄 (mod 𝑚)

These allow us to solve problems in modular arithmetic, e.g.
• add/subtract numbers from both sides of equations
• multiply numbers on both sides of equations.
• use chains of equivalences





Example: Proof by Cases with mod

Let 𝒏 be an integer.  Prove that 𝒏𝟐 ≡ 𝟎 (mod 4) or
𝒏𝟐 ≡ 𝟏 mod 4 .

Let’s start by looking at small examples: 
02 = 0   ≡ 0 (mod 4)
12 = 1   ≡ 1 (mod 4)
22 = 4   ≡ 0  (mod 4)
32 = 9  ≡ 1 (mod 4)
42 =  16 ≡ 0  (mod 4)

It looks as though we have:
If 𝒏 is even then 𝒏𝟐 ≡ 𝟎 mod 4
If 𝒏 is odd then 𝒏𝟐 ≡ 𝟏 mod 4



Example: Proof by Cases with mod

Case 1 (𝑛 is even):
Suppose 𝑛 is even.  
Then, 𝑛 = 2𝑘 for some integer 𝑘.
So, 𝑛2 = (2𝑘)#= 4𝑘2 = 4𝑘2+ 0. 
So, by the definition of congruence, 
we have 𝑛2 ≡ 0 (mod 4).

Let 𝒏 be an integer.  Prove that 𝒏𝟐 ≡ 𝟎 (mod 4) or
𝒏𝟐 ≡ 𝟏 mod 4 .



Example: Proof by Cases with mod

Case 1 (𝑛 is even): Done.

Case 2 (𝑛 is odd):
Suppose 𝑛 is odd.
Then, 𝑛 = 2𝑘 + 1 for some integer 𝑘.
So, 𝑛2 = 2𝑘 + 1 #

= 4𝑘2+ 4𝑘 + 1
= 4(𝑘2+ 𝑘) + 1. 

So, by definition of congruence,
we have 𝑛2 ≡ 1 (mod 4).

Result follows by proof by cases since 𝑛 is either even or odd

Let 𝒏 be an integer.  Prove that 𝒏𝟐 ≡ 𝟎 (mod 4) or
𝒏𝟐 ≡ 𝟏 mod 4 .


