CSE 311: Foundations of Computing

Lecture 10: Modular Arithmetic

feoo 2w

Fo

-

e ,306... 1,307 ..

e
e

-

.. 32,767...-32,7%8...
Bapa  EARAG -
2

=]

:u .'3‘2;?6?--; "3‘2.1?66 smm

2L

=5




Last Class: Divisibility

Definition: “b divides a”

For a, b with b # 0:
b|la«< 3q (a=qb)

\
Check Your Understanding. Which of the following are true?

5|1 25 | 5 3|2

5] 1iff1 =5k 25 | 5iff 5= 25k 5|0iff0=5k 3|2iff2=3k

@ @ 0|5 2|3

1]|5iff5=1k 5| 25iff 25 = 5k O|5iff5=0k 2| 3iff3=2k




Domain of Discourse

Last class: Division Theorem ___ Integers |

Division Theorem

Fora, b withb > 0
there exist unique integers g, rwith0 <r < b
such thata = gb +r.

o

To put it another way, if we divide b into a, we get a
unique quotient | g=adiv b
and non-negative remainder | r=amod b

Note:r=20evenifa<0O.
Not quite the same as a % d.




Last class: div and mod

-1 -1-1-1-1 -1 -1

-7 -6

-5 -4 -3

-2 -1

x=7-(xdiv7)+ (x mod7)

0

X mod 7

x div7

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15



Arithmetic, mod 7

(@a+ b)mod 7
(@ X b) mod 7




Domain of Discourse

Modular Arithmetic ___ Integers |

Definition: “a is congruent to b modulo m”

Fora, b, m withm > 0
a=b(modm) < m|(a —b)

\

New notion of “sameness” or “equivalence” that
will help us understand modular arithmetic.

This is a predicate (T/F values) on integers a, b, m. It
does not produce numbers as output.

There is really a notion of sameness for each m > 0.
It may help you to think of a = b (mod m) for a fixed
m > 0 as an equivalence a =,,, b.

Standard math notation writes the (mod m) on the
right to tell you what notion of sameness = means.



Domain of Discourse
Integers ]

Modular Arithmetic

Definition: “a is congruent to b modulo m”

Fora, b, m withm > 0
a=b(modm) < m|(a —b)

\

A chain of equivalences is written

a=b=c=d(modm)

This means a = b (mod m)
and b = ¢ (mod m)
and ¢ = d (mod m)



Domain of Discourse

Modular Arithmetic ___Integers

J

\

Definition: “a is congruent to b modulo m”

Fora, b, m withm > 0
a=b(modm) < m|(a —b)

\

Check Your Understanding. What do each of these mean?
When are they true?
X =0 (mod 2)

This statement is the same as saying “x is even”; so, any x that is
even (including negative even numbers) will work.

-1 =19 (mod 5)
This statement is true. 19 - (-1) = 20 which is divisible by 5
y =2 (mod 7)

This statement is true for yin{...,-12,-5, 2,9, 16, ...}. In other
words, all y of the form 2+7k for k an integer.



a=b(modm) e m|(a —b)

Modular Arithmetic: A Property

Let a, b, m be integers with m > 0.
Then, a = b (mod m) if and only if a mod m = b mod m.




a=b(modm) e m|(a —b)

Modular Arithmetic: A Property

Let a, b, m be integers with m > 0.
Then, a = b (mod m) if and only if a mod m = b mod m.

(<) Suppose that a mod m = b mod m.

By the division theorem, a = mq + (a mod m) and
b = ms + (b mod m) for some integers g,s.

Goal: show a = b (mod m), i.e., m | (a — b).




a=b(modm) e m|(a —b)

Modular Arithmetic: A Property

Let a, b, m be integers with m > 0.
Then, a = b (mod m) if and only if a mod m = b mod m.

(<) Suppose that a mod m = b mod m.

By the division theorem, a = mq + (a mod m) and
b = ms + (b mod m) for some integers g,s.

Then,a -b = (mq + (a mod m)) - (ms + (b mod m))
= m(q-s) + (amodm- b modm)
= m(q-s)sinceamodm = bmodm

Goal: show a = b (mod m), i.e., m | (a — b).




a=b(modm) e m|(a —b)

Modular Arithmetic: A Property

Let a, b, m be integers with m > 0.
Then, a = b (mod m) if and only if a mod m = b mod m.

(<) Suppose that a mod m = b mod m.

By the division theorem, a = mq + (a mod m) and
b = ms + (b mod m) for some integers g,s.

Then,a -b = (mq + (a mod m)) - (ms + (b mod m))
= m(q-s) + (amodm- b modm)

= m(q-s)sinceamodm = bmodm

Therefore, m | (a — b) and soa = b (mod m).

Goal: show a = b (mod m), i.e., m | (a — b). (Halfway there)




a=b(modm) e m|(a —b)

Modular Arithmetic: A Property

Let a, b, m be integers with m > 0.
Then, a = b (mod m) if and only if a mod m = b mod m.

(=) Suppose that a = b (mod m).

Then, m | (a - b) by definition of congruence.
So, a - b = km for some integer k by definition of divides.
Therefore, a = b + km.

Goal: show a mod m = b mod m




a=b(modm) e m|(a —b)

Modular Arithmetic: A Property

Let a, b, m be integers with m > 0.
Then, a = b (mod m) if and only if a mod m = b mod m.

(=) Suppose that a = b (mod m).

Then, m | (a - b) by definition of congruence.
So, a - b = km for some integer k by definition of divides.
Therefore, a = b + km.

By the Division Theorem, we have a = gm + (a mod m),
where 0 < (a mod m) < m.

Goal: show a mod m = b mod m




a=b(modm) e m|(a —b)

Modular Arithmetic: A Property

Let a, b, m be integers with m > 0.
Then, a = b (mod m) if and only if a mod m = b mod m.

(=) Suppose that a = b (mod m).

Then, m | (a - b) by definition of congruence.
So, a - b = km for some integer k by definition of divides.
Therefore, a = b + km.

By the Division Theorem, we have a = gm + (a mod m),
where 0 < (a mod m) < m.

Combining these, we have gm + (amod m) = a = b + km
or equiv., b = gm — km + (a mod m) = (g — k)m + (a mod m).
By the Division Theorem, we have b mod m = a mod m. B

Goal: show a mod m = b mod m ‘



a=b(modm) e m|(a —b)

Modular Arithmetic: A Property

Let a, b, m be integers with m > 0.
Then, a = b (mod m) if and only if a mod m = b mod m.

(=) Suppose that a = b (mod m).

Then, m | (a - b) by definition of congruence.
So, a - b = km for some integer k by definition of divides.
Therefore, a = b + km.

By the Division Theorem, we have a = gm + (a mod m),
where 0 < (a mod m) < m.

Combining these, we have gm + (amod m) = a = b + km
or equiv., b = gm — km + (a mod m) = (g — k)m + (a mod m).
By the Division Theorem, we have b mod m = a mod m. B

Goal: show a mod m = b mod m ‘



Modular Arithmetic: A Property

Let a, b, m be integers with m >

_ In future, we will usually go
Then, a = b (mod m) if and only

directly between these

(=) Suppose that a = b (mod m).‘/ without discussing
“divides” every time.

Then, m | (a - b) by definiti congruence.
So, a - b = km for some integer k by definition of divides.
Therefore, a = b + km.

By the Division Theorem, we have a = gm + (a mod m),
where 0 < (a mod m) < m.

Combining these, we have gm + (amod m) = a = b + km
or equiv., b = gm — km + (a mod m) = (g — k)m + (a mod m).
By the Division Theorem, we have b mod m = a mod m. B



The mod m function vs the = (mod m) predicate

 What we have just shown

— The mod m function maps any integer a to a
remainder a mod m € {0,1,.., m — 1}.

— Imagine grouping together all integers that have
the same value of the mod m function

That is, the same remainder in {0,1,.., m — 1}.

—The = (mod m) predicate compares integers
a,b. ltis true if and only if the mod m function
has the same value on a and on b.

That is, a and b are in the same group.



Recall: Familiar Properties of “="

e Ifa=bandb =c,thena = c.
- j.e,ifa=b=c,thena =c

e fa=bandc=d,thena+c=0b+d.
— in particular, since ¢ = c is true, we can “+ c¢” to both sides

e Ifa=>bandc=d,then ac = bd.
— in particular, since ¢ = c is true, we can “X c¢” to both sides

These are the facts that allow us to
use algebra to solve problems




Modular Arithmetic: Basic Property

Let m be a positive integer.
If a = b (mod m) and b = ¢ (mod m),
then a = ¢ (mod m).




Modular Arithmetic: Basic Property

Let m be a positive integer.
If a = b (mod m) and b = ¢ (mod m),
then a = ¢ (mod m).

Suppose that a = b (mod m) and b = ¢ (mod m).



Modular Arithmetic: Basic Property

Let m be a positive integer.
If a = b (mod m) and b = ¢ (mod m),
then a = ¢ (mod m).

Suppose that a = b (mod m) and b = ¢ (mod m).
Then, by the previous property, we have
a mod m = b mod m and b mod m = ¢ mod m.

Putting these together, we have a mod m = ¢ mod m,
which says that a = ¢ (mod m), by the previous
property.



Modular Arithmetic: Addition Property

Let m be a positive integer.
If a = b (mod m) and ¢ = d (mod m)
thena+ c = b + d (mod m).




Modular Arithmetic: Addition Property

Let m be a positive integer.
If a = b (mod m) and ¢ = d (mod m)
thena+ c = b + d (mod m).

Suppose that a = b (mod m) and ¢ = d (mod m).



Modular Arithmetic: Addition Property

Let m be a positive integer.
If a = b (mod m) and ¢ = d (mod m)
thena+ c = b + d (mod m).

Suppose that a = b (mod m) and ¢ = d (mod m).
Unrolling the definitions, we can see that a - b = km and
c -d = jm for some integers k, j.

Adding the equations together gives us
(a+c)-(b+d) = m(k+)).

By the definition of congruence, we have a + ¢ = b + d (mod m).



Modular Arithmetic: Multiplication Property

Let m be a positive integer.
If a = b (mod m) and ¢ = d (mod m)
then ac = bd (mod m).

Suppose that a = b (mod m) and ¢ = d (mod m).



Modular Arithmetic: Multiplication Property

Let m be a positive integer.
If a = b (mod m) and ¢ = d (mod m)
then ac = bd (mod m).

Suppose that a = b (mod m) and ¢ = d (mod m).
Unrolling the definitions, we can see that a - b = km and

¢ -d = jm for some integer k, j or equivalently,a = km + b
andc = jm + d.



Modular Arithmetic: Multiplication Property

Let m be a positive integer.
If a = b (mod m) and ¢ = d (mod m)
then ac = bd (mod m).

Suppose that a = b (mod m) and ¢ = d (mod m).
Unrolling the definitions, we can see that a - b = km and

¢ -d = jm for some integer k, j or equivalently,a = km + b
andc = jm + d.

Multiplying both together givesus ac = (km+b)(jm +d) =
kjm? + kmd + bjm + bd.



Modular Arithmetic: Multiplication Property

Let m be a positive integer.
If a = b (mod m) and ¢ = d (mod m)
then ac = bd (mod m).

Suppose that a = b (mod m) and ¢ = d (mod m).
Unrolling the definitions, we can see that a - b = km and

¢ -d = jm for some integer k, j or equivalently,a = km + b
andc = jm + d.

Multiplying both together givesus ac = (km+b)(jm +d) =
kjm? + kmd + bjm + bd. Re-arranging, this becomes
ac -bd = m(kjm + kd + bj).



Modular Arithmetic: Multiplication Property

Let m be a positive integer.
If a = b (mod m) and ¢ = d (mod m)
then ac = bd (mod m).

Suppose that a = b (mod m) and ¢ = d (mod m).
Unrolling the definitions, we can see that a - b = km and

¢ -d = jm for some integer k, j or equivalently,a = km + b
andc = jm + d.

Multiplying both together givesus ac = (km+b)(jm +d) =
kjm? + kmd + bjm + bd. Re-arranging, this becomes
ac -bd = m(kjm + kd + bj).

This says ac = bd (mod m) by the definition of congruence. Il



Modular Arithmetic: Properties

If a = b (mod m) and b = ¢ (mod m) then a = ¢ (mod m)

If a = b (mod m) and ¢ = d (mod m) then
a+c=b+d(modm) and
ac = bd (mod m)

Corollary: |If a = b (mod m) then
a+c=b+ c(modm) and
ac = bc (mod m)

These allow us to solve problems in modular arithmetic, e.g.
e add/subtract numbers from both sides of equations
 multiply numbers on both sides of equations.

* use chains of equivalences



Example: Proof by Cases with mod

Let n be an integer. Prove that n? = 0 (mod 4) or
n? =1 (mod 4).

Let’s start by looking at small examples:
02=0 =0 (mod 4)
12=1 =1 (mod 4)
22=4 =0 (mod 4)
32=9 =1 (mod4)
42= 16 =0 (mod 4)

It looks as though we have:
If nis even then n? = 0 (mod 4)
If nis odd then n? = 1 (mod 4)




Example: Proof by Cases with mod

Let n be an integer. Prove that n? = 0 (mod 4) or
n? =1 (mod 4).

Case 1 (n is even):
Suppose n is even.
Then, n = 2k for some integer k.
So, n? = (2k)*= 4k? = 4k* + 0.
So, by the definition of congruence,
we have n? = 0 (mod 4).




Example: Proof by Cases with mod

Let n be an integer. Prove that n? = 0 (mod 4) or
n? =1 (mod 4).

Case 1 (n is even): Done.

Case 2 (n is odd):
Suppose n is odd.
Then, n = 2k + 1 for some integer k.
So, n? = (2k + 1)
=4k’ + 4k + 1
=4(k*+ k) + 1.
So, by definition of congruence,
we have n? = 1 (mod 4).

Result follows by proof by cases since n is either even or odd



