CSE 311.: Foundations of Computing

Lecture 11: Application, Primes, GCD

ALAIH, DONEHLINI,
DONEMLIN!, ALA'IH,
ALATH, DONEHLIN,
DONEHUNI DONEHLINI,
ALA\H ALAIH,
DONEHLINI ALAIH,
DONEHUNl DONEHL!NI
DONEHLINY'

)

FOR ADDED SECURITY, AFTER
WE ENCRYPT THE DATA STREAM,
WE SEND IT THROUGH OUR
NAVATJO CODE TALKER.

... 1S HE JUST USING
NAVATO WORDS FOR
'ZER0' AND "ONE™?

WHOA, HEY, KEEP
YOUR vomf_ DOWN!

M_,\,

Last class: Modular Arithmetic: Properties

If a = b\&mod m) and b = ¢ (mod m) then a = ¢ (mod m)

—

If a = b (mod m) and ¢ = d (mod m) then
a+c=b+d(modm) and
ac = bd (mod m)

Corollary: |If a = b (mod m) then
a+c=b+ c(modm) and
ac = bc (mod m)

These allow us to solve problems in modular arithmetic, e.g.
 add/subtract numbers from both sides of equations
% multiply numbers on both sides of equations.
* use chains of equivalences

Basic Applications of mod

Ce_Two’s Complement
* Hashing
* Pseudo random number generation

—

n-bit Unsignhed Integer Representation

* Represent integer x as sum of powers of 2:

99 =64+32+2+1 =26425421 420
18 =16 +2 =244+ 21

If bn_lzn_l + + b12 + bO W|th eaCh bi (S {0,1}
then binary representationis b, ,...b, b; b,

* Forn=2a:
99: 0110 0011 Easy to implement arithmetic mod 2™
18: 0001 0010 ... Just throw away bits n+1 and up

2| 2"tk 5o b, 4k2™T% = 0 (mod 2™)
fork =0

n-bit Unsignhed Integer Representation

* Largest representable numberis 2™ — 1

2" = 100...000 (n+1 bits)
2n—1= 11..111 (n bits)

THE WALL STREET JOURNAL,
Berkshire Hathaway’s Stock Price Is Too

Much for Computers

32 b ItS Berkshire Hathaway Inc. (BRK-A)

1 = $0.0001 436,401.00 67950 (+0.16%)

$429,496.7295 max At close: 400PM EDT

@gn-(lwagnitude Integer Representation

e —

n-bit signed integers
Suppose that =21 < x < 271
First bit as the sign, n — 1 bits for the value

99=64+32+2+1

18 = 16 + 2
l%: QDo oolo
Forn = 8:
99: 0110 0011 .
~18: 1001 0010 (&= (Dotoovo

Ovoo Qo0
\L_,O
| OO0 D DDo

Problem: this has both +0 and -0 (annoying)

N\
Two’s Complement Representation Z "\

Suppose that 0 < x < 2™1 VS n—\
x is represented by the binary representation of x
Suppose that —2"" 1< x < 0
x is represented by the binary representation of x + 2™
result is in the range 2" 1 < x < 2"

.
—_ > \

—2n-1 -1/0 2n1 2" N
v s

0 1 2 3 4 5 6 7 -8 -7 -6 -5 -4 -3 -2 -1

0000 0001 O0O010 0011 0100 0101 0110 O111 1000 1001 1010 1011 1100 1101 1110 1111

Two’s Complement Representation

Suppose that 0 < x < 2™1
x is represented by the binary representation of x
Suppose that —2"" 1< x < 0
x is represented by the binary representation of x + 2™
result is in the range 2" 1 < x < 2"

0 1 2 3 4 5 6 7 -8 -7 -6 -5 -4 -3 -2

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110

99=64+32+2+1
18=16+2

Forn=8:
99: 01100011
-18: 1110 1110 (-18 + 256 = 238)

1111

\S = -\
Two’s Complement Representation (W}\\Q

Suppose that 0 < x < 2™1 [b\b‘/ V\\,

x is represented by the binary representation of x
Suppose that —2"" 1< x < 0

x is represented by the binary representation of x + 2™

result is in the range 2" 1 < x < 2"

=4

0 1 2 3 4 5 6 7 3 -7 -6 -5 -4 -3 -2
0000 0001 0010 0011 0100 0101 0110 oO111 p 1001 1010 1011 1100 1101 1110

U Ggnel B g = —9 Q/\AMQ |;‘,\

Key property: First bit is still the sign bit!
o | -9

Key property: Twos complement representation of any number y
is equivalent to y (mod 2") so arithmetic works (mod 2™)

y + 2™ = y (mod 2™) /(p\l(p

o I\ VIl
7 + -\
V5
4+ ¥ \9

o\ W

oo

222 (b (el o)

prod

Two’s Complement Representation

e For 0<x <2, —xisre ed by the
binary representation @
— How do we calculate —x from x?
— E.g., what happens for “return —x;” in Java?

— (Ll
—x+2"=|(2”—1L—x+1 rQDL\D\D\ﬁ?g/

_—

* To compute this, flip the bits of x then add 1!
~——
— All 1’s string is 2™ — 1, so
Flip the bits of x means replace x by 2" — 1 — x
Then add 1 to get —x + 2"

More Number Theory
Primes and GCD

Primality

An integer p greater than 1 is called prime if the
only positive factors of p are 1 and p.

p>1 AVx((x>0)Ax]|p) > ((x=1)V(x=p)))

A positive integer that is greater than 1 and is not
prime is called composite.

p>1 Adx((x>0)A(x|p)A(x#=1)A(x # D))

Fundamental Theorem of Arithmetic

Every positive integer greater than 1 has a
“unique” prime factorization

48= 20202423 = 2.0-2°07C
591 = 3+ 197

45,523 = 45 523

321950 =2¢5¢5¢47 « 137
1.234.567.890 =2+ 3 +3 5+ 3607 * 3,803

Algorithmic Problems

* Multiplication

— Given primes p4, >, ..., Dy, calculate their

product n,p, ... px
* Factoring

— Given an integer n, determine the prime
factorization of n

Factoring

Factor the following 232 digit number [RSA768]:

123018668453011775513049495838496272077
285356959533479219732245215172640050726
365751874520219978646938995647494277406
384592519255732630345373154826850791702
612214291346167042921431160222124047927
4737794080665351419597459856902143413

12301866845301177551304949583849627207728535695953347
92197322452151726400507263657518745202199786469389956
47494277406384592519255732630345373154826850791702612
21429134616704292143116022212404792747377940806653514
19597459856902143413

|
e

334780716989568987860441698482126908177047949837
137685689124313889828837938780022876147116525317
43087737814467999489

%
367460436667995904282446337996279526322791581643
430876426760322838157396665112792333734171433968
10270092798736308917

Famous Algorithmic Problems

Factoring

— Given an integer n, determine the prime
factorization of n

Primality Testing
— Given an integer n, determine if n is prime

Factoring is hard
— (on a classical computer)

Primality Testing is easy

Greatest Common Divisor

GCD(a, b): —2
Largest integer d suchthatd | aand d | b

e GCD(100,125) = 25
« GCD(17, 49)
« GCD(11, 66)
« GCD(13, 0) B

« GCD(180, 252) = 29‘3 =%

(55 591 7
d = GCD(a,b) iff (d | d) A (d | b) AVx (((x | @) A (x | b)) = (x < d))

I I
——
— —

GCD and Factoring

/1
a=23%+352+7+11=46,200

b=2¢32+537+13=204,750

GCD(a, b) = 2min3.1) « 3min(1,2) + 5MIn(2,3) « 7min(1,1) o 11 Min(1,0) o 1 3min(0,1)

2‘\\ # %{ / gl N 7
Factoring is hard!
Can we compute GCD(a,b) without factoring?

Useful GCD Fact

Let a and b be positive integers.
We have gcd(a,b) = gcd(b, a mod b)

Proof:
We will show that the numbers dividing a and b are

the same as those dividing b and a mod b.
i.e., d|laand d|b iff d|b and d|(a mod b).

Hence, their set of common divisors are the same,
which means that their greatest common divisor is the same.

Useful GCD Fact ACA LB = 4l)

Let a and b be positive integers.

We have gcd(a,b) = scd(b) @ mod
Proof:

By definition of mod, a = q@+ or some integer g = a div b.
&

ém)l/Suppose that d|b and d|(a mod b).
Then b = md and (a mod b) = nd for some integers m and n.
Therefore a = gb + (amod b) = gmd + nd = (gm + n)d.
So d|a. Therefore d|a and d|b.
Q/ W& b — k’{b

@ Suppose that d|a and d|b.

Then a = kd and b = jd for some integers k and j.
Therefore (a mod b) = a-qgb = kd -qjd = (k -qj)d.
So d|(a mod b) also. Therefore d|b and d|(a mod b).

Since they have the same common divisors, gcd(a, b) = gcd(b,a mod b). B

Another simple GCD fact

Let a be a positive integer.
We have gcd(a,0) = a.

(Euclio@ Algorithm
7 —
gcd(a, b) = ged(b, a m@

T

int gcd(int a, int b){ /* Assumes: a >= b, b >= 0 */

if (b == 0) {

return a;
} else {

return gcd(b, |a % b);
}

¥

—

Note: gcd(b, a) = gcg,a,/g)

Euclid’'s Algorithm

Repeatedly use gcd(a, b) = gcd(b, a mod b) to reduce
numbers until you get gcd(g,0) = g.

gcd(660,126)

Euclid’'s Algorithm

Repeatedly use gcd(a, b) = gcd(b, a mod b) to reduce
numbers until you get gcd(g,0) = g.

Equations with reetursive calls:
gcd(660,126) = gcd(126, 660 mod 126) #gcd(126, 30)
= gcd(30, 126 mod 30) =gcd(30, 6)

= gcd(6, 30 mod 6) = gcd(6, 0)
=6

660 =5 * 126 + 30
126=4* 30+ 6
30=5* 6+ O

Euclid’'s Algorithm

Repeatedly use gcd(a, b) = gcd(b, a mod b) to reduce
numbers until you get gcd(g,0) = g.

Equations with recursive calls:

gcd(660,126) = gcd(126, 660 mod 126) = gcd(126, 30)
=gcd(30, 126 mod 30) =gcd(30, 6)
= gcd(6, 30 mod 6) = gcd(6, 0)
=6

Tableau form (which is much easier to work with and will be more useful):

660=5* 126 + 30 Each line computes both

126=4*_ 30+ @ quotient and remainder of the
30=5* 6+ 0 shifted numbers

NG

Division (mod m)

We already can
— Add, subtract, and, multiply numbers (mod m)

What about dividing numbers (mod m)?

In ordinary arithmetic, to divide by a we can multiply
by b = a~! = 1/a, the multiplicative inverse of a
— It doesn’t always exist
e fa=0

e if the domain is integers anda # 1, —1
— If it does exist th :@

Multiplicative inverse (mod m)

/’-

1 (mod m).

Let 0 < a, b < m. Then, b is the multiplicative

inverse of a (modulo m) iff ab

ool NO|lWD|IFT | 0| N =
ool |oldg | N|O|lw]|O| |~
NlolN|F|=H|O[lW| N[O
60620040620040
i
Nnjolvnw|lolvw|oln| o|luvn|o|wm
o
40482604826m
mljlomn|o|lolN|WL|o0| = ||~
NjJo|lN|[g ||l |lo|lN| S| O] 0
=JOo|lH|[N|O||]|O[N]|]O|OD
oJo|o|lo|lo|lo|lo|lo|o|o| o
X0123456789\
\
/(IM
N Ne) 321f/WV
in | o 6420unu
< | O N|lO|lm
m|o 5147
©
~N | o = || m
- | O <t | wn | ©
o] o o|lo| o
<1 o S T)

Finding inverses with Euclid I: Bézout’s theorem

If a and b are positive integers, then there exist
integers s and t such that
gcd(a,b) = sa + tb.

hoke
q of T
ol N
G
b@%%

VaVvb ((a>0Ab>0) - 3As3t(gcd(a,b) =sa+t

Extended Euclidean algorithm

 Can use Euclid’s Algorithm to find s, t such that
gcd(a,b) = sa + tb

Extended Euclidean algorithm

 Can use Euclid’s Algorithm to find s, t such that
gcd(a,b) = sa + tb
Step 1 (Compute GCD(a,b) in tableau form):
Example: a = 35, b = 27

Compute gcd (35, 27):

a =q*b + r

35=1*27+8
27=3*8 +3
8=2*3 +2

3=1*2 D)

2=2*1 +0

Extended Euclidean algorithm

 Can use Euclid’s Algorithm to find s, t such that

\)

a =q*b + r

35=1*27+8
27=3*8 +3
8=2%3 +2
3=1*2 +1)

2=2*1 +0

gcd(a,b) = sa + tb
Step 2 (Solve the equations for r):
Example: a = 35, b = 27

r=a-q*b
8=35-1%*27
3=27-3*8
2=8 -2*3
D=3 -1*2

Extended Euclidean algorithm

 Can use Euclid’s Algorithm to find s, t such that
gcd(a,b) = sa + tb
Step 3 (Backward Substitute Equations):
Example: a = 35, b = 27

8=35-1%*27
3=27-3*8

Extended Euclidean algorithm

 Can use Euclid’s Algorithm to find s, t such that
gcd(a,b) = sa + tb
Step 3 (Backward Substitute Equations):
Example: a = 35, b = 27 1=3 -1%*2

8=35-1%*27
3=27-3*8
2=8 -2%*3

1=3 -1*2

Extended Euclidean algorithm

 Can use Euclid’s Algorithm to find s, t such that
gcd(a,b) = sa + tb
Step 3 (Backward Substitute Equations):
Example: a = 35, b = 27 1=3 -1*2 Pluginfor2
= 3-1*(8-2%*3)

8=35-1%*27
3=27-3*8
2=8-2%*3

1=3 -1*2

Extended Euclidean algorithm

 Can use Euclid’s Algorithm to find s, t such that
gcd(a,b) = sa + tb
Step 3 (Backward Substitute Equations):
Example: a = 35, b = 27 1=3 -1%*2
= 3-1*(8-2%*3)
= 3-8+2*3 Re-arrange into
=(-1)*8+3*3 8's and 3’s
8=35-1%*27
‘ 3=27-3*8 \
2=8 -27%3

1=3 -1*2

Extended Euclidean algorithm

 Can use Euclid’s Algorithm to find s, t such that
gcd(a,b) = sa + tb
Step 3 (Backward Substitute Equations):
Example: a = 35, b = 27 1=3 -1%*2
= 3-1*(8-2%*3)
= 3-8+4+2*3
=(-1)*8+3*3
8=35-1*27 Pluginfor3

| 3=27—3*8| =(-1)*8+3?(27-3*8)
2=8 -2%3

1=3 -1*2

Extended Euclidean algorithm

 Can use Euclid’s Algorithm to find s, t such that
gcd(a,b) = sa + tb
Step 3 (Backward Substitute Equations):
Example: a = 35, b = 27 1=3 -1%*2
= 3-1*(8-2%*3)

= 3-8+2*3
=(-1)*8+3*3
8=35-1%27
3=27-3%8 =(-1)*8+3*(27-3*8)
2=8 - 2*3 =(-1)*8+3*27+(-9)*8
1=3 = 1%? = 3*27 + (-10) * 8 Re-arrange into

27’s and 8's

Extended Euclidean algorithm

 Can use Euclid’s Algorithm to find s, t such that
gcd(a,b) = sa + tb
Step 3 (Backward Substitute Equations):
Example: a = 35, b = 27 1=3 -1%*2
= 3-1*(8-2%*3)
= 3-8+4+2*3
=(-1)*8+3*3

8=35-1%*27 Plug in for 8
3=27-3*8
2=8-2*3
1=3-1%2

= (-1)*8+3*(27-3*8)
~1)*8+3*27 + (-9) *8
3 * ~10) * 8

3%27 + (-10) * (35-1*27)

Extended Euclidean algorithm

 Can use Euclid’s Algorithm to find s, t such that
gcd(a,b) = sa + tb

Step 3 (Backward Substitute Equah%
1 =

Example: a = 35, b = 27

8=35-1%27
3=27-3*8
2=8 -2%*3
1=3 -1*2
Optional Check:
(-10) * 35 = =350 Re-arrange into
13*27 = 351

35’s and 27'’s

(+
(

1) * 8+3*27+(9) 8

=3
3
3
= (-

*27 + (-10) * 8

*27 + (-10) * (35 - 1 * 27)

10) * 35 + 13 *27

Finding multiplicative inverse mod m

Suppose that gcd(a,m) = 1.

By Bézout’'s Theorem, there exist integers s and ¢
such that sa +{tm)= 1.
N

———

Therefore sa = 1 (mod m).

The multiplicative inverse b of a modulo m must also
satisfy 0 < b < m so we set b = s mod m.

It works since ba = sa = 1 (mod m)

So... we can compute multiplicative inverses with the
extended Euclidean algorithm.

