CSE 311: Foundations of Computing

Lecture 11: Application, Primes, GCD

ALATH,  DONEHLI,
DONEHLIN|,  ALA'H,
ALAH, DC}NEHUN[

ALAIH,  ALAIH,
DONEHLINI - ATATH,
DDNEHLW DUNEHL]N[
DONEHLIN!

DONEHLINI, DONEHLINI,

FOR ADDED SECURITY, AFTER
WE ENCRYPT THE DATA STREAM,
WE SEND IT THROUGH QUR
NAVAJO COPE TALKER-

... IS HE JUST USING
NNAVATO WORDS FOR
'ZERY HND "ONE"?

WHOA, HEY, KEEP
YOUR U@mE COWN!
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Last class: Modular Arithmetic: Properties

If a = b (mod m) and b = ¢ (mod m) then a = ¢ (mod m)

If a = b (mod m) and ¢ = d (mod m) then
a+c=b+d(modm) and
ac = bd (mod m)

Corollary: |If a = b (mod m) then
a+c=b+ c(modm) and
ac = bc (mod m)

These allow us to solve problems in modular arithmetic, e.g.
e add/subtract numbers from both sides of equations
 multiply numbers on both sides of equations.

* use chains of equivalences



Basic Applications of mod

!
(Q Two’s Complement

 Hashing
 Pseudo random number generation



n-bit Unsighed Integer Representation

—_—

* Represent integer x as sum of powers of 2:

99 =‘§3_£l+3~
18 =16+2
Ifb,_ 2" 1 +

2+2+1 =26425421420

iy A @ ey

= 24 4 7

-+ 4+ b2 + by with each b, € {0,1}

then binary representationis b, ,...b, b, b,

For n - GS\I 2.1\90
99: 0110 0011
18: 0001 0010

-

Easy to implement arithmetic MZ/"
... jJust throw away bits n+1 and up

2| 2"% so b, 2"TF = 0 (mod 2™)
fork =0



n-bit Unsighed Integer Representation

* Largest representable numberis 2™ — 1

2" =100...000 (n+1 bits)
n—1= 11..111 (n bits)
THE WALL STREET JOURNAL.

Berkshire Hathawy’s Stock Price Is Too

Much for Computers

32 bits Berkshire Hathaway Inc. (BRK-A)

1 = $0.0001 436,401.00 :679.50 (+0.16%)

$429,496.7295 max e o



Sign-Magnitude Integer Representation

n-bit signed integers
Suppose that —2"" 1 < x < 2n-1
First bit as the sign, n — 1 bits for the value

99=64+32+2+ 1
18=16 +2

Forn = 8;
99:
-18:

10 0011
3001 0010

Problem: this has both +0 and -0 (annoyi %
OCoeoco 0000 1900 @00



Two’s Complement Representation

Suppose that 0 < x < 2™1
X IS represMe binary representation of x
Suppose that —2"" 1< x < 0
x is represented by the binary representation of x + 2"
result is in the range 2" ! < x < 2"

-

—gn-1 ~1 0 2n-1 I on

0 1 2 3 4 5 6 7 -8 -7 -6 -5 -4 -3 -2 -1

0000 0001 0010 00112 0100 0101 0110 0112 1000 1001 1010 1012 21200 1201 12120 11112
s .\ W-1
ey -2



Two’s Complement Representation

Suppose that 0 < x < 2™1
x Is represented by the binary representation of x
Suppose that —2""1< x < 0
x Is represented by the binary representation of x + 2™
result is in the range 2" ! < x < 2"

0 1 2 3 4 5 6 7 -8 -7 -6 -5 -4 -3 -2

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110

9=064+32+2+1

18=16 +2
of
For n = 8:
99: 01100011 l

-18: 1110 1110 (-18 + 256 = 238)
-

1111



Two’s Complement Representation

Suppose that 0 < x < 2™1
x Is represented by the binary representation of x
Suppose that —2""1< x < 0
x Is represented by the binary representation of x + 2™
result is in the range 2" ! < x < 2"

0 1 2 3 4 5 6 7 -8 -7 -6 -5 -4 -3 -2 -1

0000 0001 0010 o0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

‘Mﬁ

Key property: First bit is still the sign bit!

Key property: Twos complement representation of any number y
is equivalent to y (mod 2™) so arithmetic works (mod 2™)

y + 2?" = y (mod 2™)



Two’s Complement Representation @

e For 0 < x <2" !, —xisrepresented by the

R —

binary representation of —x + 2
——
— How do we calculate —x from x? st

— E.g., what happens for “return —x;” in Java?? [(( (( V(Y

/\\ - X 0‘0“00‘
—x+2"=02"-1)—x+1 = (0\bvoTy

T Vi ||
\
* To compute this, flip the bits of x then add 1! 1

o A1
— All 1’s string is 2™ — 1, so flo‘o

Flip the bits of x means replace x by 2™ — 1 — x

w
Then add 1 to get —x + 2"
-/



Hashing

Scenario:

Map a small number of data values from a large
domain {0,1, ..., M — 1} ...

...into a small set of locations {0,1,...,n — 1} so
one can quickly check if some value is present

* hash(x) = x mod p for p a prime close to n
—or hash(x) = (ax + b) mod p

 Depends on all of the bits of the data
— helps avoid collisions due to similar values
— need to manage them if they occur



Hashing

* hash(x) = x mod p for p a prime close to n
e deterministic function with random-ish behavior

* Applications
— map integer to location in array (hash tables)

— map user ID or IP address to machine
requests from the same user / IP address go to the same machine
requests from different users / IP addresses spread randomly



Pseudo-Random Number Generation

Linear Congruential method

Xn+q1 = (@ x, +c) mod m

Choose random x,, a, ¢, m and produce
a long sequence of x,,’s



More Number Theory
Primes and GCD



Primality

An integer p greater than 1 is called prime if the
only positive factors of p are 1 and p.

p>1AVx((x>0)Ax|p) > ((x=1)V(x=p)))

A positive integer that is greater than 1 and is not
prime is called composite.

p>1 Adx((x>0)A(x|p)A(x#=1)A(x #D))



Fundamental Theorem of Arithmetic

Every positive integer greater than 1 has a
“‘unique” prime factorization

48 = 20222 +3

591 =3+ 197

45,523 = 45,523

321,950 =25+5+47+137
1,234,567,890 =23 35+ 3,607 « 3,803



Algorithmic Problems

 Multiplication

— Given primes p4, p», ..., Pk, calculate their

product p,p, ... Dk
* Factoring

— Given an integer n, determine the prime
factorization of n



Factoring

Factor the following 232 digit number [RSA768]:

123018668453011775513049495838496272077
285356959533479219732245215172640050726
365751874520219978646938995647494277406
384592519255732630345373154826850791702
612214291346167042921431160222124047927
4737794080665351419597459856902143413



12301866845301177551304949583849627207728535695953347
92197322452151726400507263657518745202199786469389956
47494277406384592519255732630345373154826850791702612
21429134616704292143116022212404792747377940806653514
19597459856902143413

[S===—==1
[—]

334/8071698956898/86044169848212690817/704 /949837
137685689124313889828837938/8002287614 /7116525317
43087/737814467999489

7N

36746043666/9959042824463379962795263227/91581643
43087642676032283815/396665112792333/34171433968
10270092798736308917



Famous Algorithmic Problems

Factoring

— Given an integer n, determine the prime
factorization of n

Primality Testing
— Given an integer n, determine if n is prime

Factoring is hard
— (on a classical computer)

Primality Testing is easy



Greatest Commmon Divisor

GCD(a, b):
Largest integer d suchthatd |aand d | b

e GCD(100, 125) = 271
(—

+ GCD(17,49) = |

e GCD(11,66) = ||

. GCD(13,0) = I3

* GCD(180,252) = 2 |,

d =GCD(a,b) iff (d 1 a) A (d | b)AVx (((x|a)(x|b))—> (x.<d))



GCD and Factoring

a=23+3+52¢7+11 =46,200
b=2¢32¢53¢7+13 =204,750

GCD(a, b) = 2min@,1) « 3min(1,2) « 5Min(2,3) ¢ 7min(1,1) ¢ 11 Min(1,0) « { 3min(0,1)
,2 3 2
~
- (4 L 5 © : n@

Factoring is hard!
Can we compute GCD(a,b) without factoring?



Useful GCD Fact

Let a and b be positive integers.
We have gcd(g,!_o) = gcd(b, a mod b)

Proof:
We will show that the numbers dividing a and b are

ame as those dividing b and a mod b.
d|a and d|b |ff d|b and d|(a mod b).

Hence, their set of common divisors are the same,
which means that their greatest common divisor is the same.



Useful GCD Fact

Let a and b be positive integers.

We have gcd(a,b) = gcd(b, a mod b)
i -

Proof: ‘ .L

By definition of mod, a =&l_)d+ Sa mod b) for some integer g = a div b.

(®) Suppose that d|b and d|(a mod b).
Then b = md and (a mod b) = nd for some integers m and n.

Therefore @ = gb + (a mod b) = gmd + nd = (gm + n)d.

So<d|a ?Therefore d|a and d|b

(4 Suppose that d|a andQlib.;
Then a = kd and b = jd for some integers k and j.

Theref odb)=a-qb=kd-qjd = (k-qj)d.
|(a mod b)also. Therefore d|b and d|(a mod b).

Since they have the same common divisors, gcd(a, b) = gcd(b,a mod b). B

<




Another simple GCD fact

Let a be a positive integer.
We have gcd(a,0) = a.



Euclid’'s Algorithm

gcd(a, b) = ged(b, a mod b) gcd(a, 0) =a

int gcd(Ant a, int b){ /* Assumes: b, b >= 0 */
if (b == 0) {
eturn a;
se {
return gcd(b, a % b);

Note: gcd(b, a) = gcd(a, b)

T 1




Euclid’'s Algorithm

Repeatedly use gcd(a, b) = gcd(b, a mod b) to reduce
numbers until you get gcd(g,0) = g.

gcd(660,126)



Euclid’'s Algorithm

Repeatedly use gcd(a, b) = gcd(b, a mod b) to reduce
numbers until you get gcd(g,0) = g. —

Equations with recursive calls:

gcd(660,126) = gcd(126, 660 mod 126) = gcd(126, 30)
= gcd(30, 126 mod 30) =gcd(30, 6)
= gcd(6, 30 mod 6) = gcd(6, 0)
=6

660 =5 * 126 + 30
126=4* 30+ 6
30=5* 6+ O



Euclid’'s Algorithm

Repeatedly use gcd(a, b) = gcd(b, a mod b) to reduce
numbers until you get gcd(g,0) = g.

Equations with recursive calls:

gcd(660,126) = gcd(126, 660 mod 126) = gcd(126, 30)
= gcd(30, 126 mod 30) =gcd(30, 6)
= gcd(6, 30 mod 6) = gcd(6, 0)
=6

Tableau form (which is much easier to work with and will be more useful):

660=5* 126+ 30 Each line computes both

126=4* 30+ @ quotient and remainder of the
30=5*% 6+ 0 shifted numbers



Division (mod m)

We already can
— Add, subtract, and, multiply numbers (mod m)

What about dividing numbers (mod m)?

In ordinary arithmetic, to divide by a we can multiply
by b = a~' = 1/a, the multiplicative inverse of a
— It doe\sn’t always exist
e ifa=20
e if the domainisintegersanda + 1,—1
— If it does exist then c_z_lg—z 1



Multiplicative inverse (mod m)

Let 0 < a, b < m. Then, b is the multiplicative

9

6

4

2
1

8

0 |5

8

2

2

1 (mod m).

—
—
—

S

inverse of a (modulo m) iff ab

6

6 |7 |8 |9

0 |5

2 {9 |6 |3

5

5

5

4

2

6 |0 (4 |8 |2

0 |5

8

3 14 |5

3

8 |4 |0 |6

1

2

2

1

0

0|3 |6 |9

oj0 |0 (O |O0O |0 (O |O|O O |O

210 (2 |4 |6 (8|02 (4|6 |8

3

| g™

4 10 |4 (8 |2
510 |5 |0 |5

6 10 |6

7 10 |7 |4

810 |8 (6 |4 |2 |0 |8 |6 |4

910 |9 (8 |7 |6 (5|4 |3

mod 7

mod 10



Multiplicative inverse mod m

Suppose that b is the multiplicative inverse of a
(modulo m) i.e. ab =1 (mod m).

Then there is a k such that km = ab — 1.
Equivalently, ab = km + 1.

So, when looking for the multiplicative inverse of a
(modulo m), we are looking for a humber b such that
ab is one more than a multiple of m.

Also, we have ab — km = 1, so if d|a and d|m,
then d|1. Therefore, if a has a multiplicative inverse
(modulo m), then gcd(a, m) = 1.



Finding inverses with Euclid I: Bézout’s theorem

If a and b are positive integers, then there exist
integers s and t such that
gcd(a,b) = sa + tb.

“

VaVb ((a>0Ab>0)— 3Is 3t (gcd(a,b) = sa + tb))

— a



Extended Euclidean algorithm

 Can use Euclid’s Algorithm to find s, ¢ such that
gcd(a,b) = sa + tb



Extended Euclidean algorithm

 Can use Euclid’s Algorithm to find s, ¢ such that
gcd(a, b) = sa + tb
Step 1 (Compute GCD(a,b) in tableau form):
Example: a = 35, b = 27
Compute gcd (35, 27):

a =q*b + r

35=1%27 +8
27=3%8 +3
8=2%3 +2
3=1%2 +

2=2*1 +0
Ee—



Extended Euclidean algorithm

 Can use Euclid’s Algorithm to find s, ¢ such that
gcd(a,b) = sa + tb

Step 2 (Solve the equations for r):
Example: a = 35, b = 27

a =q*b+r r=a-q*b

——————

— 1 * — _ 1 *
SR -
8=2%*3 +2 24
3=1*2 +1 @—3-1*2

2=2*1 +0
TN



Extended Euclidean algorithm

 Can use Euclid’s Algorithm to find s, ¢ such that
gcd(a,b) = sa + tb
Step 3 (Backward Substitute Equations):
Example: a = 35, b = 27

8=35-1%*27
3=27-3*8
2=8 -2%*3

D=3 -1*2




Extended Euclidean algorithm

 Can use Euclid’s Algorithm to find s, ¢ such that
gcd(a,b) = sa + tb
Step 3 (Backward Substitute Equations):
Example: a = 35, b = 27 1=3-1*2

8=35-1%*27
3=27-3*8
2=8 -2%*3

1=3 -1*2




Extended Euclidean algorithm

 Can use Euclid’s Algorithm to find s, ¢ such that
gcd(a,b) = sa + tb
Step 3 (Backward Substitute Equations):
Example: a = 35, b = 27 1=3 -1*2 Pluginfor2
= 3-1*(8-2%*3)

8=35-1%*27
3=27-3*8
2=8 -2%*3

1=3 -1*2



Extended Euclidean algorithm

 Can use Euclid’s Algorithm to find s, ¢ such that
gcd(a,b) = sa + tb
Step 3 (Backward Substitute Equations):
Example: a = 35, b = 27 1=3-1*2
= 3-1*(8-2%3)
= 3-84+2*3 Re-arrange into
=(—1)*8+3*3/ 8'sand 3’s

8=35-1%*27
3=27-3*8
2=8 -27*3

1=3 -1*2



Extended Euclidean algorithm

 Can use Euclid’s Algorithm to find s, ¢ such that
gcd(a,b) = sa + tb
Step 3 (Backward Substitute Equations):
Example: a = 35, b = 27 1=3 -1*2
= 3-1*(8-2%*3)

= 3-8+2*3
=(-1)*8+3*3
8=35-1%*27 Pluginfor3
3=27-3*8 —(-1)*8+37(27-3*8)
2=8-2%*3

1=3 -1*2



Extended Euclidean algorithm

 Can use Euclid’s Algorithm to find s, ¢ such that
gcd(a,b) = sa + tb
Step 3 (Backward Substitute Equations):
Example: a = 35, b = 27 1=3 -1*2
= 3-1*(8-2%*3)

= 3-8+2*3
=(-1)*8+3*3
8=35-1%*27
3=27-3*8 =(-1)*8+3*(27-3*8)
2=8 -2%3 =(-1)*8+3*27+(-9)*8
1=3 - 1%*2 = 3*27 4 (-10) * 8 Re-arrange into

— 27'sand 8’s



Extended Euclidean algorithm

 Can use Euclid’s Algorithm to find s, ¢ such that
gcd(a,b) = sa + tb
Step 3 (Backward Substitute Equations):
Example: a = 35, b = 27 1=3 -1*2
= 3-1*(8-2%*3)

= 3-8+2*3
=(-1)*84+3*3
8=35-1%*27 Plug in for 8
3=27-3*8 =(-1)*8+3*(27-3*8)
2=8 -2%*3 ~(<1)*8+3*27+(-9)*8
1=3-1%*2 = 3" -10)*8

= 3%27 4 (-10)*(35-1*27)



Extended Euclidean algorithm

 Can use Euclid’s Algorithm to find s, ¢ such that
gcd(a,b) = sa + tb

Step 3 (Backward Substitute Equatio}us):

Example: a = 35, b = 27 1=1\3 -

= |3-8+
=(-1)

8 =35-1%27

3=27-3%8 = (+1) * (27 -3*8)

2= 8 - 2%3 = (11)*8+3% 27 + (-9) *8

1=3 - 1%2 = 3%27 +(-10)*8

Optional Check: _
(-10) * 35 = -350 Re-arrange into = 3 T 27 + (_10)

13%27 = 351,  °°osand2ls  — (_10)%35 4+ 13*27




Finding multiplicative inverse mod m

Suppose that gcd(a,m) = 1.

By Bézout’s Theorem, there exist integers s and ¢
such that sa + tm = 1.
=

Therefore sa = 1 (mod m).

The multiplicative inverse b of a modulo m must also

satisfy 0 < b < msowe set b = s mod m.
P

It works since ba = sa = 1 (mod m)
—

So... we can compute multiplicative inverses with the
extended Euclidean algorithm.



Euclid’s Theorem

There are an infinite number of primes.

Proof by contradiction:

Suppose that there are only a finite number of primes
and call the full list p{, p,, ..., D;,.



Euclid’s Theorem

There are an infinite number of primes.

Proof by contradiction:

Suppose that there are only a finite number of primes
and call the full list p{, p,, ..., D;,.

Define the number P = p;:-p, - p3 - -+ + p,, and let
) =P+ 1.(Notethat Q > 1.)



Euclid’s Theorem

There are an infinite number of primes.

Proof by contradiction:

Suppose that there are only a finite number of primes
and call the full list p{, p,, ..., D;,.

Define the number P = p;:-p, - p3 - -+ + p,, and let
) =P+ 1.(Notethat Q > 1.)

Case 1: O is prime: Then Q is a prime different from
all of 4, p,, ..., p,, since it is bigger than all of them.

Case 2: () is not prime: Then () has some prime
factor p (which must be in the list). Therefore p|P
and p|Q so p|(Q - P) which means that p|1.

Both cases are contradictions,
so the assumption is false (proof by cases). &



